(ii) Suppose now that k has the Pick property and $\{\lambda_i\}$ is an interpolating sequence for \mathcal{H}_k , so there are constants $c_1, c_2 > 0$ such that

$$c_1 \sum |a_i|^2 \leq \|\sum a_i g_i\|^2 \leq c_2 \sum |a_i|^2.$$

Let (w_i) be any sequence in the closed unit ball of l^{∞} . Define a linear operator R on $\vee \{g_i\}$ by

$$R:g_i \mapsto \bar{w}_i g_i.$$

Then
$$||R|| \leq \sqrt{\frac{c_2}{c_1}}$$
, because

$$||\left(\frac{c_2}{c_1} - R^*R\right) \sum a_i g_i||^2 = \sum \bar{a}_i a_j \langle \left(\frac{c_2}{c_1} - R^*R\right) g_j, g_i \rangle$$

$$= \sum \bar{a}_i a_j \left[\frac{c_2}{c_1} \langle g_j, g_i \rangle - w_i \bar{w}_j \langle g_j, g_i \rangle\right]$$

$$= \frac{c_2}{c_1} ||\sum a_i g_i||^2 - ||\sum a_i \bar{w}_i g_i||^2$$

$$\geq \frac{c_2}{c_1} c_1 \sum |a_i|^2 - c_2 \sum |a_i|^2$$

$$\geq 0.$$

Therefore by the Pick property, there is a multiplier ϕ of norm at most $\sqrt{\frac{c_2}{c_1}}$ such that $\phi(\lambda_i) = w_i$ on any finite subset of the $\{\lambda_i\}$. Passing to a weak-star limit, one gets that this holds on the whole sequence $\{\lambda_i\}$. As the sequence (w_i) is arbitrary, $\{\lambda_i\}$ is an interpolating sequence.