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Preface

In 2005, I taught a graduate course on Dirichlet series at Washing-
ton University. One of the students in the course, David Opěla, took
notes and TeX’ed them up. We planned to turn these notes into a
book, but the project stalled.

In 2015, I taught the course again, and revised the notes. I still
intend to write a proper book, eventually, but until then I decided to
make the notes available to anybody who is interested. The notes are
not complete, and in particular lack a lot of references to recent papers.

Dirichlet series have been studied since the 19th century, but as
individual functions. Henry Helson in 1969 [Hel69] had the idea of
studying function spaces of Dirichlet series, but this idea did not really
take off until the landmark paper [HLS97] of Hedenmalm, Lindqvist
and Seip that introduced a Hilbert space of Dirichlet series that is anal-
ogous to the Hardy space on the unit disk. This space, and variations
of it, has been intensively studied, and the results are of great interest.

I would like to thank all the students who took part in the courses,
and my two Ph.D. students, Brian Maurizi and Meredith Sargent, who
did research on Dirichlet series. I would especially like to thank David
Opěla for his work in rendering the original course notes into a leg-
ible draft. I would also like to thank the National Science Founda-
tion, that partially supported me during the entire long genesis of this
project, with grants DMS 0501079, DMS 0966845, DMS 1300280, DMS
1565243.
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Notation

N = {0, 1, 2, 3, . . . }
N+ = {1, 2, 3, 4, . . . }
Z = integers
Q = rationals
R = reals
C = complex numbers
P = {2, 3, 5, 7, . . . } = {p1, p2, p3, p4, . . . }
Pk = {p1, p2, . . . , pk}
Nk = {n ∈ N+ : all prime factors of n lie in Pk}
s = σ + it, s ∈ C, σ, t ∈ R
Ωρ = {s ∈ C; Re s > ρ}
π(x) = # of primes ≤ x
µ(n) = Möbius function
d(k) = number of divisors of k
dj(k) = number of ways to factor k into exactly j factors
φ(n) = Euler totient function
Φ(s) =

∑
p∈P

log p
ps

Θ(x) =
∑

p≤x log p
σc = abscissa of convergence
σa = abscissa of absolute convergence
σ1 = max(0, σc)
σu = abscissa of uniform convergence
σb = abscissa of bounded convergence
F (x) summatory function

−
∫ T

−T
normalized integral

εn = Rademacher sequence
E = Expectation
T = torus
zr(n) := zt11 . . . ztll , where n = pt11 · · · p

tl
l

B :
∑
anz

r(n) 7→
∑
ann

−s

Q :
∑
ann

−s 7→
∑
anz

r(n)

T∞ = infinite torus
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viii NOTATION

β(x) =
√

2 sin(πx)
H2 = {

∑∞
n=1 ann

−s :
∑

n |an|2 <∞}
Mult (X ) = {ϕ : ϕf ∈ X , ∀f ∈ X}
Mϕ : f 7→ ϕf
D∞ = infinite polydisk
E(ε, f) ε-translation numbers of f
H2
w = weighted space of Dirichlet series

H2
w = weighted space of power series

QK :

(∑∞
n=1 ann

−s
)
7→
∑

n∈NK ann
−s

ρ = Haar measure on T∞
`2(G) = Hilbert space of square-summable functions on the group G
Xq = Dirichlet characters modulo q
L(s, χ) = Dirichlet L series

Hp
∞(Ω1/2) = {g ∈ Hol (Ω1/2) : [supθ∈R supσ>1/2

∫ θ+1

θ
|g(σ + it)|p dt]

1
p <∞}

‖f‖Hp =
[
limT→∞

1
2T

∫ T
−T |f(it)|p dt

]1/p

4 The left-hand side is less than or equal to a constant times the right-hand side
≈ Each side is 4 the other side
ρA(x, y) = sup{|φ(y)‖ : φ(x) = 0, ‖φ‖ ≤ 1}
H∞ = H∞(Ω0) ∩ D
E : f 7→ 〈f, gi〉
gi = kλi/‖kλi‖



CHAPTER 1

Introduction

A Dirichlet series is a series of the form
∞∑
n=1

ann
−s =: f(s), s ∈ C.

The most famous example is the Riemann zeta function

ζ(s) =
∞∑
n=1

1

ns
.

Notation 1.1. By long-standing tradition, the complex variable
in a Dirichlet series is denoted by s, and it is written as

s = σ + it.

We shall always use σ for <(s) and t for =(s).

Note 1.2. The Dirichlet series for ζ(s) converges if σ > 1; in fact,
it converges absolutely for such s, since

|n−s| = |e−(σ+it) logn| = |e−(σ+it) logn| = n−σ.

Also, if σ ≤ 0 or 0 < s ≤ 1, the series diverges, in the first case because
the terms do not tend to zero, in the second by comparison with the
harmonic series.

Remark 1.3. Consider the power series
∑∞

n=1 z
n; it converges to

1
1−z , but only in the open unit disk. Nonetheless, it determines the

analytic function f(z) = 1
1−z everywhere, since it has a unique ana-

lytic continuation to C \ {1}. The Riemann zeta function can also be
analytically continued outside of the region where it is defined by the
series.

For this continuation, it can be shown that ζ(−2n) = 0, for all n ∈
N+ and that there are no other zeros outside of the strip 0 ≤ Re s ≤ 1.
The Riemann hypothesis, proposed by Bernhard Riemann in 1859, is
one of the most famous unanswered conjectures in mathematics. It
states that all the zeros other than the even negative integers have real
part equal to 1

2
.

1



2 1. INTRODUCTION

We shall prove in Theorem 2.19 that the zeta function has no zeroes
on the line {<s = 1}.

The importance of the Riemann zeta function and the Riemann
hypothesis lies in their intimate connection with prime numbers and
their distribution. On the simplest level, this can be explained by the
Euler Product formula below.

Recall that an infinite product
∏∞

n=1 an is said to converge, if the
partial products tend to a non-zero finite number (or if one of the an’s is
zero). This is equivalent to the requirement that

∑∞
n=1 log an converges

(or an = 0, for some n ∈ N+). See e.g. [Gam01, XIII.3].

Notation 1.4. We shall let P denote the set of primes, and when
convenient we shall write

P = {p1, p2, p3, p4, . . . } = {2, 3, 5, 7, . . . }

to label the primes in increasing order. We shall let Pk denote the first
k primes.

Theorem 1.5. (Euler Product formula) For σ > 1,

∏
p∈P

(
1− 1

ps

)−1

= ζ(s) =
∞∑
n=1

n−s.

Formal proof:

∏
p∈P

(
1− 1

ps

)−1

=

(
1− 1

2s

)−1(
1− 1

3s

)−1(
1− 1

5s

)−1

. . .

=

(
1 +

1

2s
+

1

22s
+

1

23s
+ . . .

)
×(

1 +
1

3s
+

1

32s
+

1

33s
+ . . .

)
. . .

If we formally multiply out this infinite product, we can only obtain
a non-zero product by choosing 1 from all but finitely many brackets.
This product will be 1

q
r1s
1 q

r2s
2 ...q

rks

k

= 1
ns

. For each n ∈ N+, the term
1
ns

will appear exactly once, by the existence and uniqueness of prime
factoring.



1. INTRODUCTION 3

For a rigorous proof assume that Re s > 1, and fix k ∈ N+. Then∏
p∈Pk

(
1− 1

ps

)−1

=
∏
p∈Pk

(
1 +

1

ps
+

1

p2s
+

1

p3s
+ . . .

)
=

∑
n=p

r1
1 ...p

rk
k

1

ns
, (1.6)

where the last equality holds by a variation of the formal argument
above and convergence is not a problem, since we are multiplying
finitely many absolutely convergent series.

Using (1.6), we have, for Re s > 1,∣∣∣∣∣ζ(s)−
∏
p∈Pk

(
1− 1

ps

)−1
∣∣∣∣∣ =

∣∣∣∣∣∣
∑

{n; pl|n, l>k}

1

ns

∣∣∣∣∣∣ ≤
∑

n≥pk+1

1

nσ
→ 0, as k →∞.

Thus the product converges to ζ(s).
To see that the limit is non-zero, we have∣∣∣∣1− (1− 1

ps
)−1

∣∣∣∣ ≤ 1

pσ
1

pσ − 1

≤ 2

pσ
for p large.

Since σ > 1, this means that the infinite product converges absolutely,
and therefore

∑
log(1− 1

ps
)−1 converges absolutely. �

Notation 1.7. We shall let Ωρ denote the open half-plane

Ωρ = {s : <(s) > ρ}.

Corollary 1.8. ζ(s) has no zeros in Ω1.

Proof: For s ∈ Ω1, ζ(s) is given by an absolutely convergent
product. Thus, it can only be zero if one of the terms is zero. But(

1− 1
ps

)−1

= 0 if and only if ps = 0, which never happens. �

Theorem 1.9.
∑

p∈P
1
p

=∞.

Proof: Suppose not, then
∑

p∈P
1
p

converges. By the Taylor expan-

sion of log(1− x), for x close enough to 0,

−x ≤ log(1− x) ≤ −x
2
,



4 1. INTRODUCTION

so we conclude that
∑

p∈P log
(

1− 1
p

)
also converges. Since

log

(
1− 1

p

)
< log

(
1− 1

pσ

)
,

for all σ > 1 and p ∈ P, we get

−∞ <
∑
p∈P

log

(
1− 1

p

)
< lim

σ→1+

∑
p∈P

log

(
1− 1

pσ

)
= − lim

σ→1+
log

1

ζ(σ)
= −∞,

a contradiction. �

The following discrete version of integration by parts is often useful
when working with Dirichlet series. In it, integrals are replaced by
sums, and derivatives by differences. (In the familiar formula

∫ n
m
udv =

u(n)v(n) − u(m)v(m) −
∫ n
m
vdu, we let u correspond to b, v to A and

thus dv to a.)
In fact, one can prove integration by parts for Riemann integrals

using the definition (via Riemann sums) and Lemma 1.10.

Lemma 1.10. (Abel’s Summation by parts formula) Let An =∑n
k=1 ak, then

n∑
k=m

akbk = Anbn − Am−1bm +
n−1∑
k=m

Ak(bk − bk+1).

Proof: Since ak = Ak − Ak−1, we have

n∑
k=m

akbk =
n∑

k=m

[Ak − Ak−1]bk

=
n∑

k=m

Akbk −
n∑

k=m

Ak−1bk

=
n−1∑
k=m

Ak[bk − bk+1]− Am−1bm + Anbn.

�



1. INTRODUCTION 5

Notation 1.11. For x > 0, we let π(x) denote the number of
primes less than or equal to x.

The prime number theorem (see Chapter 2) is an estimate of how
big π(n) is for large n. We can use the Euler product formula to relate
π and the Riemann zeta function.

Theorem 1.12. For σ > 1,

log ζ(s) = s

∫ ∞
2

π(x)

x(xs − 1)
dx .

Proof: In the following calculation we use the fact that [π(k) −
π(k − 1)] is equal to 1 if k is a prime, and 0 if k is composite; the
equality

∑n
k=1[π(k)− π(k − 1)] = π(n); and summation by parts.

log ζ(s) = −
∑
p∈P

log

(
1− 1

ps

)
= −

∞∑
k=2

[π(k)− π(k − 1)] log

(
1− 1

ks

)
= − lim

L→∞

L∑
k=2

[π(k)− π(k − 1)] log

(
1− 1

ks

)
= − lim

L→∞

{
L−1∑
k=2

π(k)

[
log

(
1− 1

ks

)
− log

(
1− 1

(k + 1)s

)]
+ π(1) log

(
1− 1

2s

)
− π(L) log

(
1− 1

Ls

)}
The penultimate term vanishes, since π(1) = 0. As for the last term,
the trivial bound π(L) ≤ L gives∣∣∣∣π(L) log

(
1− 1

Ls

)∣∣∣∣ ≤ L · L−σ → 0 as L→∞.

We let L→∞, and use the fact that d
dx

log(1− 1
xs

) = s
xs+1−x , to get:

log ζ(s) = −
∞∑
k=2

π(k)

[
log

(
1− 1

ks

)
− log

(
1− 1

(k + 1)s

)]
= −

∞∑
k=2

π(k)

∫ k+1

k

−s
xs+1 − x

dx

= s

∫ ∞
2

π(x)

xs+1 − x
dx .

�



6 1. INTRODUCTION

Notation 1.13. The Möbius function is helpful when working
with the Riemann zeta function. It is given as follows:

µ(n) =


1, n = 1,

(−1)k, if n is the product of k distinct primes,

0, otherwise.

Its values for the first few positive integer are in the table below:
n 1 2 3 4 5 6 7 8 9 10 11 12

µ(n) 1 -1 -1 0 -1 1 -1 0 0 1 -1 0

Theorem 1.14. For σ > 1,

1

ζ(s)
=
∞∑
n=1

µ(n)n−s.

Proof: We only present a formal proof — convergence can be
checked in the same way as was done for the Euler product formula.

1

ζ(s)
=

∏
p∈P

(
1− 1

ps

)
=

(
1− 1

2s

)(
1− 1

3s

)(
1− 1

5s

)
. . .

= 1−
∑
p∈P

p−s +
∑

p,q∈P, p6=q

p−sq−s − . . .

=
∞∑
n=1

µ(n)

ns

�

It is obvious that the Dirichlet series
∑∞

n=1 ann
−s converges (con-

verges absolutely, respectively) for all s ∈ Ωρ if and only if the series∑∞
n=1(ann

−ρ)n−s converges (conv. abs., resp.) for all s ∈ Ω0. This
ability to translate the Dirichlet series horizontally often allows one to
simplify calculations. (It is analogous to working with power series and
assuming the center is at 0). The proof of the proposition below is a
typical example of this.

The following “uniqueness-of-coefficients” theorem will be used fre-
quently.

Proposition 1.15. Suppose that
∑∞

n=1 ann
−s converges absolutely

to f(s) in some half-plane Ωρ and f(s) ≡ 0 in Ωρ. Then an = 0 for all
n ∈ N+.
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Proof: As remarked, we may assume that ρ < 0, so in particular,∑
|an| <∞. Suppose all the an’s are not 0, and let n0 be the smallest

natural number such that an0 6= 0.
Claim: limσ→∞ f(σ)nσ0 = an0 .

To prove the claim note that

0 ≤ nσ0

∣∣∣∣∣∑
n>n0

ann
−σ

∣∣∣∣∣
≤

∑
n>n0

|an|
(n0

n

)σ
≤

(
n0

n0 + 1

)σ ∑
n>n0

|an|,

and the last term tends to 0 as σ →∞, since
∑
|an| converges. As

f(σ)nσ0 = an0 + nσ0
∑
n>n0

ann
−σ,

the claim is proved.

The proof is also finished, because the limit in the claim is obviously
0, a contradiction. �

Recall that the Cauchy product formula for the product of power
series states that(∑

anz
n
)(∑

bmz
m
)

=
∞∑
k=0

( ∑
0≤n≤k

anbk−n

)
zk,

if at least one of the sums on the left-hand side converges absolutely.
The Dirichlet series analogue below involves the sum over all divisors of
a given integer. The multiplicative structure of the natural numbers is
far more complex than their additive structure. Indeed, as an additive
semigroup N+ is singly generated, while as a multiplicative semigroup
it is not finitely generated — the smallest set of generators is P. This is
one of the reasons why the theory of Dirichlet series is more complicated
than the theory of power series. Now, we state the Dirichlet series
analogue of the Cauchy product formula. The proof is immediate.

Theorem 1.16. Assume that
∑∞

n=1 ann
−s and

∑∞
m=1 bmm

−s con-
verge absolutely. Then(

∞∑
n=1

ann
−s

)(
∞∑
m=1

bmm
−s

)
=
∞∑
k=1

∑
n|k

anbk/n

 k−s,

with absolute convergence.
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Corollary 1.17. For σ > 1,

ζ2(s) =
∞∑
k=1

d(k)k−s,

where d(k) denotes the number of divisors of k. More generally,

ζj(s) =
∞∑
k=1

dj(k)k−s,

where dj(k) denotes the number of ways to factor k into exactly j fac-
tors. Here, 1 is allowed to be a factor and two factorings that differ
only by the order of the factors are considered to be distinct.

Proof: We shall prove the first formula. Using Theorem 1.16, we
have, for σ > 1,

ζ2(s) =

(
∞∑
n=1

n−s

)(
∞∑
m=1

m−s

)

=
∞∑
k=1

∑
n|k

1

 k−s

=
∞∑
k=1

d(k)k−s.

The proof of the second formula is analogous. �

The formula for 1
ζ(s)

implies the following identity for the Möbius

function. (It can also be proved directly.)

Corollary 1.18.
∑

n|k µ(n) = 0, for all k ≥ 2.

Proof: For σ > 1, write

1 = ζ(s)ζ−1(s)

=

(
∞∑
m=1

1

ms

)(
∞∑
n=1

µ(n)

ns

)

=
∞∑
k=1

∑
n|k

µ(n)

 1

ks
.

Comparing the coefficients of the outer-most Dirichlet series completes
the proof. �
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Proposition 1.19. (Möbius inversion formula) Let f, g be
functions on N+. If

g(q) =
∑
n|q

f(n), then f(q) =
∑
d|q

µ(q/p)g(d).

Proof: ∑
d|q

µ(q/p)g(d) =
∑
d|q

µ(q/p)
∑
n|d

f(n)

=
∑
n|q

 ∑
d|q, q

d
| q
n

µ(q/d)

 f(n)

=
∑
n|q

∑
s| q
n

µ(s)

 f(n)

= f(q),

since, by the preceding corollary, the bracket is non-zero only when
q/n = 1. �

Definition 1.20. The Euler totient function φ(n) is defined as
#{1 ≤ k ≤ n; gcd(n, k) = 1}.

Clearly, φ(p) = p− 1, iff p is a prime. In fact, one can express φ(n)
in terms of the prime factors of n.

Lemma 1.21. If n = qr11 . . . qrkk with rj > 0, then

φ(n) = n
k∏
j=1

(
1− 1

qj

)
.

Proof: First, note that gcd(n,m) 6= 1, if and only if, qj
∣∣m, for

some 1 ≤ j ≤ k. Consider the uniform probability distribution on
{1, . . . , n}. Let Ej be the event that qj divides a randomly chosen
number in {1, . . . , n}. For any l that divides n, there are exactly n/l
numbers in {1, . . . , n} divisible by l. Thus, the events {Ej}kj=1 are
independent and hence so are their complements. Hence, φ(n)/n, the
probability that a randomly chosen number is not divisible by any qj,
is equal to the product of the probabilities that it is not divisible by
qj, that is

∏
j(1− 1/qj). �

Theorem 1.22. For σ > 2,

ζ(s− 1)

ζ(s)
=
∞∑
n=1

φ(n)

ns
.
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Proof: Again, we will only prove it formally, since turning it into a
rigorous proof is routine, but renders the proof harder to read. By the
Euler product formula, we have

ζ(s− 1)

ζ(s)
=

∏
p∈P

(
1− 1

ps

)
(

1− 1
ps−1

)
=

∏
p∈P

(
1− 1

ps

)[
1 +

p

ps
+
p2

p2s
+ . . .

]
=

∏
p∈P

([
1 +

p

ps
+
p2

p2s
+ . . .

]
−
[

1

ps
+

p

p2s
+
p2

p3s
+ . . .

])
=

∏
p∈P

[
1 +

(
1− 1

p

)(
p

ps
+
p2

p2s
+ . . .

)]
=

∞∑
n=1

ann
−s,

where

an =
k∏
j=1

(
1− 1

qj

)
q
rj
j = n

k∏
j=1

(
1− 1

qj

)
= φ(n),

for n = qr11 . . . qrkk . �

1.1. Exercises

1. Prove that if χ : N+ → T∪{0} is a quasi-character, which means
χ(mn) = χ(m)χ(n), the same argument that proved the Euler product
formula (Theorem 1.5) shows that

∞∑
n=1

χ(n)

n−s
=
∏
p∈P

(
1

1− χ(p)p−s

)
.

1.2. Notes

For a thorough treatment of the Riemann zeta function, see [Tit86].
The material in this chapter comes from the first few pages of Titch-
marsh’s magisterial book.



CHAPTER 2

The Prime Number Theorem

2.1. Statement of the Prime number theorem

We have defined π(n) to be the number of primes less than or equal
to n. Euclid’s proof that there are an infinite number of primes says
that limn→∞ π(n) = ∞; but how fast does it grow? By Theorem 1.9
and Abel’s summation by parts formula we know

∞ =
∑
p∈P

1

p

=
∞∑
n=2

[π(n)− π(n− 1)]
1

n

≈
∞∑
n=2

π(n)
1

n2
,

so π(n) cannot be O(nα) for any α < 1.
Gauss conjectured that

π(x) ∼ x

log x
, (2.1)

where the asymptotic symbol ∼ in (2.1) means that the ratio of the
quantities on either side tends to 1 as x→∞. Tchebyshev proved that

.93
x

log x
≤ π(x) ≤ 1.1

x

log x

for x large, and also showed that if

lim
x→∞

π(x)

x/ log x

exists, it must be 1. The full prime number theorem was proved in
1896 by de la Vallée Poussin and Hadamard.

Theorem 2.2. [Prime Number Theorem]

π(x) ∼ x

log x
.

11



12 2. THE PRIME NUMBER THEOREM

Looking at some examples, we see that

π(106) = 78, 498

106

log(106)
≈ 72, 382

 =⇒ π(106)
106

log 106

≈ 1.08

and
π(109) = 50, 847, 478

109

log(109)
≈ 48, 254, 942

 =⇒ π(109)
109

log 109

≈ 1.05

Definition 2.3. For s ∈ Ω1, we define

Φ(s) :=
∑
p∈P

log p

ps
.

It is easy to see that this Dirichlet series converges absolutely in Ω1.

Definition 2.4. For x ∈ R, define

Θ(x) :=
∑

p∈P, p≤x

log p.

The key to proving the Prime number theorem is establishing the
estimate Θ(x) ∼ x (Proposition 2.27).

Say more here?

2.2. Proof of the Prime number theorem

We will now prove the Prime number theorem in a series of steps.

Lemma 2.5.

Θ(x) = O(x) as x→∞, i.e., lim sup
x→∞

Θ(x)

x
<∞.

Proof: Note that (
2n

n

)
≥

∏
n<p≤2n, p∈P

p.

Indeed, the LHS is a positive integer that is divisible by the RHS. Note
that we have not yet proved that there are any primes between n and
2n, so the RHS may be an empty product (we interpret empty products
as having the value 1).

Thus, (
2n

n

)
≥

∏
n<p≤2n

p = eΘ(2n)−Θ(n).
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Now, by the binomial theorem,

22n = (1 + 1)2n =

(
2n

0

)
+ · · ·+

(
2n

n

)
+ · · ·+

(
2n

2n

)
,

Thus

22n ≥
(

2n

n

)
=⇒ en log 4 ≥

(
2n

n

)
≥ eΘ(2n)−Θ(n),

and consequently

Θ(2n)−Θ(n) ≤ n log 4.

For x ∈ R, x ≥ 1, we have

Θ(2x)−Θ(x) ≤ Θ(b2xc)−Θ(bxc)
≤ Θ(2 bxc+ 1)−Θ(bxc)
≤ log(b2xc+ 1) + Θ(b2xc)−Θ(bxc)
≤ cx.

Now fix x and choose n ∈ N such that x
2n+1 ≤ 1 ≤ x

2n
. Then, by

telescoping,

Θ(x)−Θ(1) =
n∑
j=0

Θ(
x

2j
)−Θ(

x

2j+1
)

≤
n∑
j=0

c
x

2j+1

= cx.

Since Θ(1) = 0, we conclude that

Θ(x) = O(x) (2.6)

2

Recall that Φ(s) =
∑

p∈P
log p
ps

. Since
∑

p∈P
1
p

= ∞ (Theorem 1.9)

we conclude that Φ(s) has a pole at 1.

Lemma 2.7. The function Φ(s)− 1
s−1

is holomorphic in Ω1.

Proof: In Ω1,

ζ(s) =
∏
p∈P

(
1− 1

ps

)−1

=
∏
p∈P

1

1− ps
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By logarithmic differentiation we obtain

ζ(s)

ζ ′(s)
= −

∑
p∈P

∂
∂s

(1− p−s)
1− p−s

= −
∑
p∈P

(p−s log p)
1

1− p−s

= −
∑
p∈P

log p

ps − 1
(2.8)

Now
1

ps − 1
=

1

ps
+

1

ps(ps − 1)
(2.9)

Combining (2.8) and (2.9), we obtain, for s ∈ Ω1,

−ζ ′(s)
ζ(s)

=
∑
p∈P

log p

ps
+
∑
p∈P

log p

ps(ps − 1)
(2.10)

Note that we can rearrange the terms since the series converge abso-
lutely in Ω1. Thus, for s ∈ Ω1,

−ζ ′(s)
ζ(s)

= Φ(s) +
∑
p∈P

log p

ps(ps − 1)
(2.11)

The second term on the RHS defines an analytic function in Ω1/2 as
the series converges there absolutely. Thus in Ω1/2, any information

about the analyticity of −ζ
′(s)

ζ(s)
translates into the analyticity of Φ(s).

The function ζ(s) has a pole at 1 with residue 1 and so ζ(s)− 1
s−1

is analytic near 1, and consequently, ζ ′(s) + 1
(s−1)2

is analytic near 1.

Thus ζ′(s)
ζ(s)
−
− 1

(s−1)2

1
s−1

= ζ′(s)
ζ(s)
− 1

(s−1)
is analytic near 1.

Thus

Φ(s) =
ζ ′(s)

ζ(s)
−
∑
p∈P

log p

ps(ps − 1)
(2.12)

is holomorphic in Ω1/2 ∩ {s : ζ(s) 6= 0}.
It remains to prove that ζ(s) 6= 0 if Re s ≥ 1.

Definition 2.13. The von Mangoldt function Λ : N0 → R, is
defined as

Λ(m) =

{
log p, if m = pk,

0, else.
(2.14)
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Proposition 2.15. For s ∈ Ω1

−ζ ′(s)
ζ(s)

=
∑
n≥2

Λ(n)

ns
=
∑
p∈P

log p

ps − 1
(2.16)

holds.

Proof: We have ζ(s) =
∏

p∈P(1− 1
ps

)−1 and thus

ζ ′(s)

ζ(s)
= −

∑
p∈P

log p
p−s

1− 1
ps

= −
∑
p∈P

log p

ps − 1

which proves that the first and last term in the statement of the propo-
sition are equal. For Re s > 1, ‖1/ps‖ < 1, so the first equality above
yields

ζ ′(s)

ζ(s)
= −

∑
p∈P

(log p)p−s(1 +
1

ps
+

1

p2s
+ . . . )

= −
∑
p∈P

∞∑
k=1

log p(pk)−s.

This double summation goes over exactly those numbers n = pk for
which Λ(n) does not vanish and thus, for s ∈ Ω1,

−ζ
′(s)

ζ(s)
=
∑
p∈P

∞∑
k=1

log p(pk)−s =
∑
n≥2

Λ(n)

ns
(2.17)

2

Lemma 2.18. Let x0 ∈ R and assume F is holomorphic in a neigh-
borhood of x0, F (x0) = 0 and F 6= 0. Then there exists ε > 0 such
that

Re

(
F ′(x)

F (x)

)
> 0

for x ∈ (x0 − ε, x0 + ε).
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Proof: Write F (x) = ak(s − x0)k + ak+1(s − x0)k+1 + . . . where
k > 0. Then

F ′(x)

F (x)
=

kak(x− x0)k−1 + (k + 1)ak+1(x− x0)k + . . .

ak(x− x0)k + ak+1(x− x0)k+1 + . . .

=
k + (k+1)ak+1

ak
(x− x0) + . . .

(x− x0) + ak+1

ak
(x− x0)2 + . . .

≈ k

x− x0

> 0,

for x ∈ (x0, x0 + ε). 2

Theorem 2.19. The Riemann ζ function does not vanish on the
line {<(s) = 1}.

Proof: Suppose that ζ(1 + it0) = 0, for t0 ∈ R \ {0}. Define

F (s) := ζ3(s)ζ4(s+ it0)ζ(s+ 2it0). (2.20)

At s = 1, we see that ζ3 has a pole of order 3, and ζ4(s+it0) vanishes to
order 4, so F (1) = 0. Thus, in a neighborhood of 1, F is holomorphic.

Using Lemma 2.18, Re
(
F ′(x)
F (x)

)
> 0 for x ∈ (1, 1 + ε). Computing

F ′(x)

F (x)
= 3

ζ ′(x)

ζ(x)
+ 4

ζ ′(x+ it0)

ζ(x+ it0)
+
ζ ′(x+ 2it0)

ζ(x+ 2it0)

=
∑
n≥2

Λ(n)
[
−3n−x − 4n−xe−it0 logn − n−xe−2it0 logn

]
,

thus,

Re
F ′(x)

F (x)
=

∑
n≥2

−Λ(n)n−x [3 + 4 cos(t0 log n) + cos(2t0 log n)]

=
∑
n≥2

−Λ(n)n−x [2 + 4 cos(t0 log n) + 2 cos(t0 log n)]

We observe that −Λ(n)n−x ≤ 0 for every n ≥ 2 while the term in the
square bracket is always non-negative, since it the square of

√
2[1 + cos(t0 log n)],

a contradiction with Lemma 2.18. 2

Lemma 2.21. Let f(t) : [0,∞)→ C be bounded and suppose that

g(s) =

∫ ∞
0

f(t)e−st dt (2.22)
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extends to a holomorphic function in Ω0. Then
∫∞

0
f(t) dt exists and

equals g(0).

Proof: Let

gT (s) =

∫ T

0

f(t)e−st dt . (2.23)

Then gT is an entire function by Morera’s theorem, and gT (0) =∫ T
0
f(t) dt . We want to show that limt→∞ gT (0) = g(0).
insert image around here
For R, δ > 0 let UR,δ := D(0, R) ∩ Ω−δ. For any R > 0 there

is δ > 0 such that g is holomorphic in UR,δ, since by hypothesis g is
holomorphic in a neighborhood of Ω0. Let C := ∂UR,δ and C+ = C∩Ω0

and C− = C \ Ω0. By Cauchy’s theorem:

g(0)− gT (0) =
1

2πi

∫
C

[g(s)− gt(s)] esT
(

1 +
s2

R2

)
ds

s
, (2.24)

since est(1 + s2

R2 ) has value 1 at 0 and is holomophic everywhere in our

contour. Let h(s) := [g(s)− gt(s)] esT
(

1 + s2

R2

)
. In Ω0, we have

|g(s)− gT (s)| =

∣∣∣∣∫ ∞
T

f(t)e−st dt

∣∣∣∣
≤ M

∣∣∣∣∫ ∞
T

e−st dt

∣∣∣∣
= M

∣∣∣∣∫ ∞
T

e−(Re s)t dt

∣∣∣∣
= M

1

Re s
e−Re s T

Thus ∣∣∣∣∫
C+

h(s)
ds

s

∣∣∣∣ ≤
∫
C+

∣∣f(t)e−st dt
∣∣

≤ M

∫
C+

e−Re sT

Re s

∣∣∣∣esTs
(

1 +
s2

R2

)∣∣∣∣ | ds |
For s ∈ C+, we have |s| = R and so(

1 +
s2

R2

)
1

s
=
R2 + s2

R2s
=
|s|2 + s

R2s
=
s+ s

R2
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Thus, ∣∣∣∣∫
C+

h(s)
ds

s

∣∣∣∣ ≤ M

2π

∫
C+

e−Re sT

Re s

eRe sT

s

2Re s

R2
| ds |

≤ M

πR2
πR

=
M

R

We conclude
∫
C+
h(s) ds

s
→ 0 as R→ 0.

For C−, we will show that both

I1(T ) :=

∫
C−

|g(s)| esT
(

1 +
s2

R2

)
ds

s

and

I2(T ) :=

∫
C−

|gT (s)| esT
(

1 +
s2

R2

)
ds

s

tend to 0 as R tends to 0.
We start with I1:

|gT (s)| =

∣∣∣∣∫ T

0

f(t)e−st dt

∣∣∣∣
≤ M

∫ T

0

e−(Re s)t dt

≤ M

∫ T

−∞
e−(Re s)t dt

=
M

Re s
e−Re st

Therefore,

I1(T ) ≤
∫
C−

Me−(Re s)t

|Re s|

∣∣∣∣esT (1 +
s2

R2

)
1

s

∣∣∣∣ | ds |
and since gT is an entire function, we can integrate over the semicircle
Γ− instead of C− and use the same estimates as in Ω0 to get

I1(T ) ≤ M

R
.

Now

I2(T ) =

∫
C−

[
g(s)

(
1 +

s2

R2

)
1

s

]
esT ds
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and the expression in square bracket is independent of T and holo-
morphic in a neighborhood of C− while esT → 0 as T → ∞. Using
dominated convergence theorem, we conclude that I2 → 0 as T →∞.

Thus,

|g(0)− g(T )| ≤
∣∣∣∣∫
C+

h(s)
ds

s

∣∣∣∣+ |I1(T )|+ |I2(T )

≤ M

R
+
M

R
+ I2(T )→ 2M

R

Taking the limit as R→∞ implies that g(0) = limT→∞ gT (0) 2

Lemma 2.25. The integral
∫∞

1
Θ(x)−x
x2

dx converges.

Proof: For Re s > 1,

Φ(s) =
∑
p∈pri

log p

ps
=

∫ ∞
1

dΘ(x)

dx

We are using the Stiltjes integral in the last expression because Θ(x)
is a step function.

We use integration by parts with u := x−s and dv := dΘ(x). Then
du = −sx−(s+1) dx and v(x) = Θ(x), giving

Φ(x) = x−sΘ(x)
∣∣∣∞
1

+ s

∫ ∞
1

Θ(x)

xs+1
dx .

The first term vanishes since Θ(x) = O(x) as x → ∞. We conclude
that

Φ(s) = s

∫ ∞
1

Θ(x)

xs+1
dx .

Now let us use the substitution, x = et to get

Φ(s) = s

∫ ∞
0

Θ(et)e−ts dt .

We want apply Lemma 2.21 to f(t) := Θ(et)e−t−1 and g(s) = Θ(s+1)
s+1
−

1
s
. By Lemma 2.5, we get that f(t) is bounded and by Lemma 2.7, we

know that Θ(s+1)
s+1

− 1
s

is holomorphic in Ω0. In order to apply Lemma
2.21, we need to check that g(s) is the Laplace transform of f(t).

We have ∫ ∞
0

Θ(et)e−te−ts dt =

∫ ∞
0

Θ(et)e−t(s+1) dt

and ∫ ∞
0

1e−ts dt =
1

s
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and thus g(s) is the Laplace transform of f(t), and we can apply Lemma
2.21 to conclude that

∫∞
0
f(t) dt exists.∫ ∞

0

f(t)dt =

∫ ∞
0

[
Θ(et)e−t − 1

]
dt

=

∫ ∞
1

[
Θ(x)

1

x
− 1

]
dx

x

=

∫ ∞
1

[
Θ(x)− x

x2

]
dx

which concludes the proof. 2

Note 2.26. See [Fol99, p. 107] for information on integration by
parts in the context of the Stieltjes integrals.

Proposition 2.27. limx→∞
Θ(x)
x

= 1, that is, Θ(x) ∼ x.

Proof: We will proceed by contraction. There are two cases.

First assume that lim supx→∞
Θ(x)
x

> 1. Thus, there exists λ > 1
and a sequence {xn} with xn → ∞ such that Θ(xn) > λxn. Then,
since Θ is non-decreasing,∫ λxn

xn

Θ(t)− t
t2

dt ≥
∫ λxn

xn

λxn − t
t2

dt =: cλ.

We integrate the two pieces,∫ λxn

xn

λxn
t2

dt = λxn

(
−1

t

∣∣∣λxn
xn

)
= λ− 1

and ∫ λxn

xn

dt

t
= log(λxn)− log xn = log λ

to conclude that cλ = λ− 1− log λ > 0 by a well-known inequality for

log. This implies that
∫∞

1
Θ(x)−x
x2

dx does not converge, a contradiction.

The second case is that lim infx→∞
Θ(x)
x

< 1, so there is λ < 1 and

a sequence {xn} with xn →∞ and Θ(xn)
xn

< λ. As before,∫ xn

λxn

Θ(t)− t
t2

dt ≤
∫ λxn

xn

λxn − t
t2

dt = −cλ = −(λ− 1− log λ) < 0

and we reach a contraction as in the first case. 2
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Proof of Theorem 2.2. We can estimate

Θ(x) =
∑
p≤x

log p

≤
∑
p≤x

log x

= π(x) log x.

By Proposition 2.27, Θ(x) ∼ x and thus we have the bound

lim sup
x→∞

π(x)
log x

x
≥ 1.

For the other bound, let ε > 0, and write

Θ(x) ≥
∑

x1−ε≤p≤x

log p

≥
∑

x1−ε≤p≤x

log x1−ε

= [π(x)− π(x1−ε)](1− ε) log x

= (1− ε) log x
[
π(x) +O(x1−ε)

]
where the last equality come from Lemma 2.5.

We have

π(x) log x ≤ 1

1− ε
Θ(x) +O(x1−ε log x)

and hence
π(x) log x

x
≤ 1

1− ε
Θ(x)

x
+O(x−ε log x).

Using Proposition 2.27 again, we get

lim sup
x→∞

π(x)
log x

x
≤ 1

1− ε
for every ε > 0. Taking ε→ 0 yields

lim sup
x→∞

π(x)
log x

x
≤ 1

which concludes the proof. 2

2.3. Historical Notes

The offset logarithmic integral function, Li(x) :=
∫ x

2
dt

log t
satisfies

Li(x) ≈ x
log x
≈ π(x) but is a better approximation to π(x).

Gauss conjectured that π(n) ≤ Li(n). This was disproved by E.
Littlewood in 1914.
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During the proof of the Prime Number Theorem, we used the fact
that ζ(s) does not vanish for Re s ≥ 1. More precise estimates showing
that the zeros of ζ(s) must lie “close to” the critical line {Re s = 1/2}
yield estimates on the error |π(x)− Li(x)|.

The Riemann hypothesis is equivalent to the error estimate

π(x) = Li(x) +O(
√
x log x).

The best known estimate is of the error is

π(x) = Li(x) +O(xe
− A(log x)3/5

(log log x)1/5 ).



CHAPTER 3

Convergence of Dirichlet Series

We will now investigate convergence of Dirichlet series. Much of
the general theory holds for generalized Dirichlet series , that is, series
of the form

∞∑
n=1

ane
−λns.

An ordinary Dirichlet series corresponds, of course, to the case λn =
log n.

When dealing with a generalized Dirichlet series, we shall always
assume that λn is a strictly increasing sequence tending to infinity, and
that λ1 ≥ 0. Sometimes, an additional assumption is needed, such as
the Bohr condition, namely λn+1 − λn ≥ c/n, for some c > 0.

Recall that for a power series
∑∞

n=1 anz
n there exists a (unique)

value R ∈ [0,∞], called the radius of convergence, such that

(1) if |z| < R, then
∑∞

n=1 anz
n converges,

(2) if |z| > R, then
∑∞

n=1 anz
n diverges,

(3) for any r < R, the series
∑∞

n=1 anz
n converges uniformly and

absolutely in {|z| ≤ r} and the sum is bounded on this set,
(4) on the circle {|z| = R}, the behavior is more delicate.

As we shall see, the situation for Dirichlet series is more compli-
cated. In particular, compare the third point above with Proposi-
tion 3.10.

We start with a basic result.

Theorem 3.1. If the series
∑∞

n=1 ann
−s converges at some s0 ∈ C,

then, for every δ > 0, it converges uniformly in the sector {s : −π
2
+δ <

arg(s− s0) < π
2
− δ}.

Proof: As usual, we may assume s0 = 0, that is,
∑

n an converges.
Let rn :=

∑∞
k=n+1 ak, and fix ε > 0. Then there exist n0 ∈ N such that

|rn| < ε for all n ≥ n0. Using summation by parts, for s in the sector

23
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and M,N > n0

N∑
n=M

ann
−s =

N∑
n=M

(rn−1 − rn)n−s

=
N−1∑
n=M

rn

[
1

(n+ 1)s
− 1

ns

]
(3.2)

+
rM−1

M s
− rN
N s

.

The absolute values of the last two terms are bounded by ε, since their
numerators are bounded by ε while the denominators have absolute
value at least 1. To estimate (3.2), note that

1

(n+ 1)s
− 1

ns
=

∫ n+1

n

−s
xs+1

dx ,

so that∣∣∣∣ 1

(n+ 1)s
− 1

ns

∣∣∣∣ ≤ |s|∫ n+1

n

dx

|xs+1|
=
|s|
σ

[
1

nσ
− 1

(n+ 1)σ

]
. (3.3)

Thus the absolute value of (3.2) satisfies, for M,N > n0,∣∣∣∣∣
N−1∑
n=M

rn

[
1

(n+ 1)s
− 1

ns

]∣∣∣∣∣ ≤
N−1∑
n=M

|rn|
|s|
σ

[
1

nσ
− 1

(n+ 1)σ

]

≤ ε
|s|
σ

N−1∑
n=M

[
1

nσ
− 1

(n+ 1)σ

]
≤ ε

|s|
σ

[
1

Mσ
− 1

Nσ

]
≤ c(δ)ε, (3.4)

since |s|
σ

= |1/ cos(arg s)| ≤ 1/ cos
(
π
2
− δ
)

=: c(δ). This proves that
the series is uniformly Cauchy, and hence uniformly convergent. �

Corollary 3.5. If
∑∞

n=1 ann
−s converges at s0 ∈ C, then it con-

verges in Ωσ0.

Proof: This follows from the inclusion Ωσ0 ⊂
⋃
δ>0{s : arg |s−s0| <

π
2
− δ}. �

This implies that there exists a unique value σc ∈ [−∞,∞] such
that the Dirichlet series converges to the right of it, and diverges to the
left of it.
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Definition 3.6. The abscissa of convergence of the Dirichlet se-
ries

∑∞
n=1 ann

−s is the extended real number σc ∈ [−∞,∞] with the
following properties

(1) if Re s > σc, then
∑∞

n=1 ann
−s converges,

(2) if Re s < σc, then
∑∞

n=1 ann
−s diverges.

Note 3.7. To determine the abscissa of convergence, it is enough
to look at convergence of the series for s ∈ R.

Example 3.8. It may not be true that the series
∑∞

n=1 ann
−s con-

verges absolutely in Ωσc+δ for every δ > 0, in contrast with the behavior
of power series. An example of this phenomenon is the alternating zeta
function defined as

ζ̃(s) =
∞∑
n=1

(−1)n

ns
.

First note that σc = 0 for this series. Indeed, the alternating series
test implies convergence for all σ > 0, and the series clearly diverges if
σ ≤ 0. Absolute convergence of the series is convergence of the series∑∞

n=1
1
nσ

, so occurs if and only if <(s) > 1.

Definition 3.9. Given a Dirichlet series
∑∞

n=1 ann
−s, the abscissa

of absolute convergence is defined as

σa = inf

{
ρ :

∞∑
n=1

ann
−s converges absolutely for some s with Re s = ρ

}

= inf

{
ρ :

∞∑
n=1

ann
−s converges absolutely for all s with Re s ≥ ρ

}
.

Proposition 3.10. For any Dirichlet series, we have

σc ≤ σa ≤ σc + 1.

Proof: The first inequality is obvious. For the second, assume,
by the usual trick, that σc = 0. We need to show that for σ > 1,∑∞

n=1 |ann−s| converges. Take ε > 0 such that σ − ε > 1. Then,

∞∑
n=1

∣∣∣an
ns

∣∣∣ =
∞∑
n=1

|an|
nσ

=
∞∑
n=1

|an|
nε
· 1

nσ−ε
, ≤ C

∞∑
n=1

1

nσ−ε
< ∞,

where C := supn
∣∣an
nε

∣∣ is finite, since σc = 0. �

Remark 3.11. If an > 0 for all n ∈ N+, then σc = σa. This follows
immediately by considering s ∈ R.
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Recall that for the radius of convergence of a power series, we have
the following formula

1/R = lim sup
n→∞

|an|
1
n .

The following is an analogous formula for the abscissa of convergence
of a Dirichlet series.

Theorem 3.12. Let
∑∞

n=1 ann
−s be a Dirichlet series, and let σc

be its abscissa of convergence. Let sn = a1 + · · ·+ an and rn = an+1 +
an+2 + . . . .

(1) If
∑
an diverges, then 0 ≤ σc = lim supn→∞

log |sn|
logn

.

(2) If
∑
an converges, then 0 ≥ σc = lim supn→∞

log |rn|
logn

.

Proof: We will show (1); the second part has a similar proof. Hence
we assume that

∑∞
n=1 an diverges and define

α := lim sup
n→∞

log |sn|
log n

.

We will first prove the inequality α ≤ σc. Assume that
∑∞

n=1 ann
−σ

converges. Thus σ > 0 and we need to show that σ ≥ α. Let
bn = ann

−σ and Bn =
∑n

k=1 bk (so that B0 = 0). By assumption,
the sequence {Bn} is bounded, say by M , and we can use summation
by parts as follows:

sN =
N∑
n=1

an

=
N∑
n=1

bnn
σ

=
N−1∑
n=1

Bn[nσ − (n+ 1)σ] +BNN
σ

so that

|sn| ≤ M

N−1∑
n=1

[(n+ 1)σ − nσ] +MNσ

≤ 2MNσ.

Applying the natural logarithm to both sides yields

log |sn| ≤ σ logN + log 2M,
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so
log |sn|
logN

≤ σ +
log 2M

logN
,

and this tends to σ as N →∞, giving the desired upper bound for α.
We need to show the other inequality: σc ≤ α. Suppose that σ > α;

we need to show that
∑∞

n=1 ann
−σ converges. Choose an ε > 0 such

that α + ε < σ. By definition, there exist n0 ∈ N such that for all
n ≥ n0

log |sn|
log n

≤ α + ε.

This implies that

log |sn| ≤ (α + ε) log n = log(nα+ε).

Thus, |sn| ≤ nα+ε, for all n ≥ n0. Observe that

1

nσ
− 1

(n+ 1)σ
= σ

∫ n+1

n

du

uσ+1
≤ σn−(σ+1).

Using summation by parts, we can compute

N∑
n=M+1

an
nσ

=
N∑

n=M

sn
[
n−σ − (n+ 1)−σ

]
+ sN(N + 1)−σ − sMM−σ

≤
N∑

n=M

nα+ε
[
σn−σ−1

]
+Nα+εN−σ +Mα+εM−σ

. (M − 1)α+ε−σ,

and the last quantity tends to zero as M tends to ∞.

We estimated
∑N

n=M nα+ε−σ−1 by the integral
∫ N−1

M−1
xα+ε−σ−1 dx .

(M−1)α+ε−σ, and the symbol . means less than or equal to a constant
times the right hand-side (where the constant depends on α + ε − σ,
but, critically, not on M). �

Exercise 3.13. Prove (2) of Theorem 3.12.

From the formulae above we can simply deduce formulae for the
abscissa of absolute convergence, although these can be derived easily
on their own.

Corollary 3.14. For a Dirichlet series
∑∞

n=1 ann
−s, we have

(1) if
∑
|an| diverges, then σa = lim supn→∞

log(|a1|+···+|an|)
logn

≥ 0,

(2) if
∑
|an| converges, then σa = lim supn→∞

log(|an+1|+|an+2|+... )
logn

≤
0.
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Proof: Recall that to determine the abscissae, one only needs to
consider s ∈ R and then absolute convergence of the series is exactly
convergence of the Dirichlet series whose coefficient are the absolute
values of the original coefficients. �

Example 3.15. The series
∞∑
n=1

(−1)n

psn

has σc = 0 and σa = 1.

Proof: The series of coefficients diverges and so we use the first of
the pair of formulae for each abscissae:

σc = lim sup
n→∞

log 1

log n
= 0,

and, using the prime number theorem,

σa = lim sup
n→∞

log(π(n))

log n
= lim sup

n→∞

log n− log(log n)

log n
= 1.

Exercise 3.16. Show that Theorem 3.1 holds for the generalized
Dirichlet series

∑∞
n=1 ane

−λns, (assuming, as we always do, that λn is
an increasing sequence tending to infinity).

(Hint: Find a substitute for (3.3), by considering the integral∫
se−sxdx .)

Therefore generalized Dirichlet series also have an abscissa of con-
vergence.

Exercise 3.17. Show that Theorem3.12 implies that if the abscissa
of convergence σc ≥ 0, then

∀ ε > 0, sn = O(nσc+ε). (3.18)



CHAPTER 4

Perron’s and Schnee’s formulae

Suppose you know the function values f(s) of some function f that,
at least in some half-plane, can be represented by the Dirichlet series∑∞

n=1 ann
−s. How do you determine the coefficients an? We have seen

one way already in Proposition 1.15:

a1 = lim
s→∞

f(s)

a2 = lim
s→∞

2s[f(s)− a1]

a3 = lim
s→∞

3s[f(s)− a1 − a22−s]

and so on. The disadvantage is that these formulae are inductive.
Schnee’s theorem (Theorem 4.11) gives an integral formula for an, and
Perron’s formula (Theorem 4.5) gives a formula for the partial sums.

First, we need to recall the Mellin transform.

Definition 4.1. Suppose that g(x)xσ−1 ∈ L1(0,∞), then

(Mg)(s) :=

∫ ∞
0

g(x)xs−1 ds

is the Mellin transform of g at s = σ + it.

Remark 4.2. The Mellin transform is closely related to the Fourier
transform and the Laplace transform. From one point of view, the
Fourier transform is the Gelfand transform for the group (R,+), while
the Mellin transform is the Gelfand transform for the group (R+,×).
The two groups are isomorphic and homeomorphic via the exponential
map, and we can use this to derive the formula for the inverse of the
Mellin transform.

Here is an inverse transform theorem for the Fourier transform.
BVloc means locally of bounded variation, i.e. every point has a neigh-
borhood on which the total variation of the function is finite.

Theorem 4.3. If h ∈ BVloc(−∞,∞) ∩ L1(−∞,∞), then

1

2

[
h(λ+) + h(λ−)

]
=

1

2π
lim
T→∞

∫ T

−T
(Fh)(ξ)eiλξ dξ,

29
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for all λ ∈ R.

Proof: See [Tit37, Thm. 24]. �

This gives us the following formula for the inverse of the Mellin
transform.

Theorem 4.4. Suppose that g ∈ BVloc(0,∞). Let σ ∈ R, and
assume that g(x)xσ−1 ∈ L1(0,∞). Then

1

2

[
g(x+) + g(x−)

]
=

1

2πi
lim
T→∞

∫ σ+iT

σ−iT
(Mg)(s)x−s ds,

for all x > 0.

Proof: Let λ = log x, then G(λ) := g(eλ) belongs to BVloc(−∞,∞).
Let h(λ) := G(λ)eλσ. Then∫ ∞

−∞
|h(λ)| dλ =

∫ ∞
−∞
|g(eλ)|eλ(σ−1)eλ dλ

=

∫ ∞
0

|g(x)|xσ−1 dx

< ∞,
so h belongs to L1(−∞,∞). It also belong to BVloc(−∞,∞), be-
cause, locally, it is the product of a function of bounded variation and
a bounded increasing function. We have

(Mg)(s) =

∫ ∞
0

g(x)xs−1 dx

=

∫ ∞
0

G(λ)eλs dλ

=

∫ ∞
−∞

(
G(λ)eλσ

)
eiλt dt

= F
(
G(λ)eλσ

)
(−t)

= (Fh)(−t).
Now, we apply Theorem 4.3 to h.

1

2

[
g(x+) + g(x−)

]
= e−λσ

1

2

[
h(λ+) + h(λ−)

]
= e−λσ

1

2π
lim
T→∞

∫ T

−T
(Fh)(ξ)eiλξ dξ

= e−λσ
1

2π
lim
T→∞

∫ T

−T
(Mg)(σ − it)eiλt dt

= e−λσ
1

2π
lim
T→∞

∫ T

−T
(Mg)(σ + it)e−iλt dt
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=
1

2π
lim
T→∞

∫ T

−T
(Mg)(σ + it)e−λ(σ+it) dt

=
1

2πi
lim
T→∞

∫ σ+iT

σ−iT
(Mg)(s)e−λs ds

=
1

2πi
lim
T→∞

∫ σ+iT

σ−iT
(Mg)(s)x−s ds,

and we are done. �

Given a Dirichlet series
∑∞

n=1 ann
−s, let F (x) =

∑′
n≤x an, where∑′ means that for x = m ∈ N+, the last term of the sum is replaced

by am
2

so that the function F (x) satisfies

F (x) =
1

2

[
F (x+) + F (x−)

]
for all x. This function F (x) is called the summatory function of the
Dirichlet series.

Theorem 4.5. (Perron’s formula) For a Dirichlet series f(s) =∑∞
n=1 ann

−s, the summatory function satisfies

F (x) =
1

2πi
lim
T→∞

∫ σ+iT

σ−iT

f(w)

w
xwdw, (4.6)

for all σ > max(0, σc).

Before we prove Perron’s formula, we need the following two propo-
sitions.

Proposition 4.7. Let Fσ(x) =
∑′

n≤x ann
−σ, then

(1) Fσ(x) = x−σF (x) + σ
∫ x

0
F (y)y−σ−1 dy,

(2) F (x) = xσFσ(x)− σ
∫ x

0
Fσ(y)yσ−1 dy.

Proof: First note that if σ = 0, the formulae hold trivially.
To prove (1), evaluate the integral on the RHS by parts, assuming

that x /∈ N:

RHS = x−σF (x) +

[
− F (y)y−σ

]x
0

+

∫ x

0

y−σdF (y)

=
∑
n≤x

ann
−σ = Fσ(x).

If x0 ∈ N+, note that the difference between the limit of the LHS as
x → x0− and the value of the LHS at x0 is 1

2
ann

−σ and the same is
true for the RHS, since the integral on the RHS depends continuously
on x. Since the two sides were equal for all x ∈ (x0 − 1, x0) and they
jump by the same amount at x0, they are equal at x0 as well.
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To prove (2) one can either do an analogous calculation, or set
bn = ann

−σ, let Gσ(x) =
∑′

n≤x bnn
−σ, and let G(x) = G0(x). Now we

apply (1) with G in place of F and σ̃ = −σ instead of σ to get

F (x) = Gσ̃(x)

= x−σ̃G(x) + σ̃

∫ x

0

G(y)y−σ̃−1 dy

= xσFσ(x) − σ

∫ x

0

Fσ(y)yσ−1 dy,

since F (x) = G−σ(x) and Fσ(x) = G(x). �

The following is a necessary condition for a function to be repre-
sentable by a Dirichlet series.

Proposition 4.8. Consider the Dirichlet series f(s) ∼∑∞
n=1 ann

−s and take a positive σ satisfying σ > σ1 := max(0, σc).
Then

f(σ + it) = o(|t|), as |t| → ∞. (4.9)

Proof: By Theorem 3.12, we know that F (x)x−σ → 0 as x → ∞
(see Exercise 3.17). Since F (x) is 0 if x < 1, we have that F (x)x−σ−1 ∈
L1(0,∞). By Proposition 4.7,

f(σ) = lim
x→∞

Fσ(x) = lim
x→∞

x−σF (x) + σ

∫ ∞
0

F (y)y−σ−1 dy.

Since the first term tends to 0, we obtain

f(σ)

σ
= (MF )(−σ), for all σ > σ1. (4.10)

In fact, (4.10) holds for all s ∈ Ωσ1 , since both sides are ana-
lytic there. As The function H(λ) := F (eλ)e−λs is integrable and
F(H)(t) = (MF )(−s), by a similar change of variables argument to
the one we used in the proof of Theorem 4.4. So by the Riemann-
Lebesgue lemma we have

lim
t→±∞

f(s)

s
= lim

t→±∞
(MF )(−s)

= lim
t→±∞

F(H)(t)

= 0.

Therefore we get (4.9), since |s| ≈ |t| as t→ ±∞. �

We will now prove Perron’s formula (4.6).
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Proof: The function F is in BVloc(0,∞), and F (x)x−σ−1 ∈
L1(0,∞). So we can apply the Mellin inversion formula toMF (−s) =
f(s)
s

and use the substitution u = −w as follows:

F (x) =
1

2
[F (x+) + F (x−)] =

1

2πi
lim
T→∞

∫ −σ+iT

−σ−iT
(MF )(u)x−u du

= − 1

2πi
lim
T→∞

∫ σ−iT

σ+iT

f(w)

w
xw dw

=
1

2πi
lim
T→∞

∫ σ+iT

σ−iT

f(w)

w
xw dw,

and we are done. �

One can use this formula to estimate the growth of an from es-
timates of the growth of f(w). Also, note that the formula might
hold for smaller σ’s, provided that f extends holomorphically to larger
half-planes. This follows from the Cauchy integral formula applied to
integrals along long vertical rectangles.

Recall that one can use the Cauchy integral formula to obtain the
coefficients of a power series from the values of the function it repre-
sents, namely

an =
1

2π

∫ 2π

0

f(eiθ)e−inθ dθ.

The following theorem is a Dirichlet series analogue.

Theorem 4.11. (Schnee) Consider the Dirichlet series f(s) ∼∑∞
n=1 ann

−s. One has, for σ > σc,

lim
T→∞

1

2T

∫ T

−T
f(σ + it)eiλt dt =

{
ann

−σ, if λ = log n,

0, otherwise.
(4.12)

Proof: Formally, exchanging the order of summation and integra-
tion, one gets

1

2T

∫ T

−T
f(σ + it)eiλt dt = −

∫ T

−T

∑
ane

(−σ−it) logn+iλt dt

=
∑

ann
−σ −
∫ T

−T
ei(λ−logn)t dt. (4.13)

We write −
∫ T

−T
to denote the normalized integral, obtained by dividing

by the size of the set over which we are integrating. The integral in
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(4.13) is 1 if λ = log n, and tends to 0 as T → ∞ otherwise, since for
α 6= 0, one has

−
∫ T

−T
eiαt dt =

1

2Tiα

[
eiαT − e−iαT

]
=

sin(αT )

αT
.

This computation works fine for finite sums, and hence we can
change finitely many coefficients of the series. So we may assume that
an = 0, if log n ≤ λ+ 1, and then we must show that the LHS of (4.12)
is zero.

Case (i): σ > 0.
Consider the integral inside the limit. Then t lies in the finite inter-

val [−T, T ] and on this interval the series converges uniformly (since it
is contained in an appropriate sector, and we can apply Theorem 3.1).
Thus we may interchange the order of summation and integration and
then use integration by parts as follows

1

2T

∫ T

−T

∑
n≥eλ+1

ann
−σei(λ−logn)t dt =

∑
ann

−σ −
∫ T

−T
ei(λ−logn)t dt

=

∫ ∞
0

x−σ −
∫ T

−T
ei(λ−log x)t dt dF (x)

=

∫ ∞
0

x−σ
sin[(λ− log x)T ]

(λ− log x)T
dF (x)

=

[
x−σ sin[(λ− log x)T ]

(λ− log x)T
F (x)

]∞
0

(4.14)

−
∫ ∞

0

F (x)
d

dx

[
x−σ sin[(λ− log x)T ]

(λ− log x)T

]
dx.(4.15)

Since F (x) = 0 for x < 1, the term in brackets in (4.14) vanishes
at 0. At infinity, F (x) = O(xσ1+ε) = o(xσ), by choosing ε small
enough. (Again we let σ1 denote max(0, σc)). Hence the expression
is o((log x)−1) and so the whole term (4.14) vanishes.

We will show that the limit of (4.15) as T → ∞ vanishes as well.
We need to differentiate the square bracket. We obtain three terms:

d

dx

[
x−σ sin[(λ− log x)T ]

(λ− log x)T

]
=

−σx−σ−1 sin[(λ− log x)T ]

(λ− log x)T

+
−x−σ−1T cos[(λ− log x)T ]

(λ− log x)T

+
x−σ−1 sin[(λ− log x)T ]

(λ− log x)2T
.
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For each of these terms, we estimate the corresponding integral. Recall
that F (x) = O(xσ1+ε) for any positive ε. In particular, x−σF (x) =
O(x−δ), for any δ < σ − σ1. The first and third terms are similar and
we get, as T →∞

I :

∣∣∣∣∫ ∞
eλ+1

F (x)
−σx−σ−1 sin[(λ− log x)T ]

(λ− log x)T
dx

∣∣∣∣ =
1

T

∫ ∞
eλ+1

O(x−1−δ)→ 0,

III :

∣∣∣∣∫ ∞
eλ+1

F (x)
x−σ−1 sin[(λ− log x)T ]

(λ− log x)2T
dx

∣∣∣∣ =
1

T

∫ ∞
eλ+1

O(x−1−δ)→ 0.

The remaining term is more delicate. We will use the change of vari-
ables u = (log x− λ), so that dx = eu+λdu. We have

II :

∫ ∞
eλ+1

F (x)
−x−σ−1T cos[(λ− log x)T ]

(λ− log x)T
dx = −

∫ ∞
1

F (eu+λ)e−(1+σ)(u+λ) cosTu

u
eλ+u du

= −
∫ ∞

1

F (eu+λ)e−σ(u+λ)

u
cosTu du,

and the last integral tends to 0 as T → ∞ by the Riemann-Lebesgue
lemma. Indeed,

g(u) := F (eu+λ)
e−σ(u+λ)

u
= O(e−δ(u+λ)), as u→∞,

and thus belongs to L1.

Case (ii): σ ≤ 0.
Choose some a such that σ + a > 0, and define g(s) = f(s − a).

Then

1

2T

∫ T

−T
f(σ + it)eiλt dt =

1

2T

∫ T

−T
g((σ + a) + it)eiλt dt,

and we can reduce to Case (i). �

Exercise 4.16. Check that the same proof yields Schnee’s theorem
for generalized Dirichlet series. Let λn be a strictly increasing sequence
with limn→∞ λn = ∞. Define the abscissa of convergence for f(s) =∑
ane

−λns just as for an ordinary Dirichlet series. Then, for σ > σc,

lim
T→∞

1

2T

∫ T

−T
f(σ + it)eiµt dt =

{
ane

−λnσ, if µ = λn,

0, otherwise.
(4.17)

4.1. Notes

Perron’s formula, like Schnee’s theorem, also holds for generalized
Dirichlet series. For further results in this vein, see [Hel05, Ch. 1].





CHAPTER 5

Abscissae of uniform and bounded convergence

5.1. Uniform Convergence

We introduced the alternating zeta function ζ̃ in Example 3.8, and
showed its abscissa of convergence was 0, whilst its abscissa of absolute
convergence was 1. In the strip {0 < <s < 1}, one can ask whether
there is another form of convergence, intermediate between absolute
and pointwise conditional convergence. For example, in what half-
planes does the series converge uniformly or to a bounded function?

The values of the alternating zeta function are closely related to
the values of the Riemann zeta function; more precisely,

ζ̃(s) = (21−s − 1)ζ(s). (5.1)

Indeed, for σ > 1, both series converge absolutely, so we can reorder
the terms freely, and hence

ζ̃(s) =
∞∑
n=1

(−1)n

ns

=
∞∑
n=1

−1

ns
+ 2

∞∑
n=1

1

(2n)s

= (−1 + 21−s)ζ(s).

We will see later [?] that ζ(s) can be analytically continued to C \ {1},
and that this continuation is unbounded on any of the lines {s : Re s =
α} with α ∈ (0, 1). The relationship (5.1) will hold for the continuation

as well, since both sides are analytic, and shows that ζ̃(s) must also be
unbounded on {Re s = α}. Hence the convergence cannot be uniform
on this line either. We can get uniform convergence, however, provided
we divide by s, as the following proposition shows.

Proposition 5.2. If f(s) =
∑∞

n=1 ann
−s converges at s0 = 0, then,

for any δ > 0,
1

s

∞∑
n=1

ann
−s

converges uniformly to f(s)
s

in Ωδ.

37
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Proof: We use the same estimates as when we proved uniform con-
vergence in the sector, but we replace the inequality (3.4) by

ε
|s|
σ

[
1

Mσ
− 1

(N + 1)σ

]
≤ |s|

δ
ε.

This is an estimate for the main term of
∑N

n=M ann
−s. Each of the two

other terms was estimated by ε, so with the extra 1/s, we obtain, using
1/|s| < 1/δ, ∣∣∣∣∣1s

N∑
n=M

ann
−s

∣∣∣∣∣ ≤ 3
ε

δ
,

for M,N ≥ n0 and s ∈ Ωδ. Thus we are done. �

Definition 5.3. For a Dirichlet series f(s) ∼
∑∞

n=1 ann
−s we de-

fine the abscissa of uniform convergence σu as

σu := inf

{
ρ :

∞∑
n=1

ann
−s converges uniformly in Ωρ

}
,

and the abscissa of bounded convergence σb as

σb := inf

{
ρ :

∞∑
n=1

ann
−s converges to a bounded function in Ωρ

}
.

If a Dirichlet series converges absolutely at some s0 ∈ C, then it
converges uniformly in the closed half-plane Ωσ0 by the comparison
criterion. Also, if a Dirichlet series converges uniformly in some half-
plane Ωσ0 , for N large enough, the sum differs by at most 1 from the

partial sum
∑N

n=1 ann
−s, for all s ∈ Ωσ0 . But (the absolute value of)

this partial sum is bounded by
∑N

n=1 |an|n−σ0 <∞, and so the Dirichlet
series converges to a bounded function in Ωσ0 . Combining these two
observations with the previously known inequalities between σc and σa
and the obvious inequality σc ≤ σb we obtain

σc ≤ σb ≤ σu ≤ σa ≤ σc + 1.

In fact, σb = σu, a result due to Bohr in 1913 [Boh13b].

Theorem 5.4. (H. Bohr) Suppose that a Dirichlet series con-
verges somewhere and extends analytically to a bounded function in
Ωρ. Then for all δ > 0, the Dirichlet series converges uniformly in
Ωρ+δ.

Proof: Suppose that |f | ≤ K in Ωρ and fix 0 < δ < 1. If ρ ≥ σa,
we are done by the chain of inequalities above. Thus, we may assume
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that ρ < σa. Observe, that it is enough to prove the following estimate
for σ ≥ ρ+ δ: ∣∣∣∣∣f(s)−

N∑
n=1

ann
−s

∣∣∣∣∣ ≤ C(K, δ)N−δ logN, (5.2)

since the right-hand side is o(1) as N →∞.
To prove 5.2, we fix s and N and define

g(z) :=
f(z)

z − s

(
N +

1

2

)z−s
.

Let d denote σa − ρ + 2, and integrate g around the rectangle with
vertices s− δ ± iNd and s+ (σa − ρ)± iNd.

It would be nice to put a picture in here
By the residue theorem, we obtain∫

�
g(z) dz = 2πif(s).

Consider the left-hand edge of the rectangle (LHE), on it we can esti-
mate

|g(z)| ≤ K√
δ2 + Im2(z − s)

(
N +

1

2

)−δ
so that ∣∣∣∣∫

LHE

g(z) dz

∣∣∣∣ . KN−δ
∫ Nd

−Nd

1√
δ2 + y2

dy

= KN−δ
[

log
(
y +

√
δ2 + y2

)]Nd

−Nd

≤ CKN−δ[logN + log δ]
= C(K, δ)N−δ logN.

As for the integration over both of the horizontal edges (HE), we can
use the same estimate∣∣∣∣∫

HE

g(z) dz

∣∣∣∣ ≤ KN−d
∫ σ+d−2

σ−δ

(
N +

1

2

)x−σ
dx

. KN−d
[

1

logN
Nx−σ

]x=σ+d−2

x=σ−δ

.
KN−2

logN
.
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Hence, we can conclude that

2πif(s) =

∫
RHE

g(z) dz +O(N−δ logN).

Since the series converges absolutely on RHE, we can interchange
the order of integration and summation∫

RHE

g(z) dz =

∫
RHE

∞∑
n=1

ann
−z
(
N +

1

2

)z−s
1

z − s
dz

=
∞∑
n=1

an

∫
RHE

n−z
(
N +

1

2

)z−s
1

z − s
dz

=
∞∑
n=1

ann
−s
∫
RHE

(
N + 1

2

n

)z−s
1

z − s
dz

We will show that the contribution of the tail of the series above
— the sum for n > N — is small, while the sum over n ≤ N is
approximately the partial sum of the Dirichlet series.

First, assume that n > N , i.e., n ≥ N + 1. Apply Cauchy’s theo-
rem to the rectangular path whose left-hand edge is RHE and whose
horizontal sides have length L, and let L tend to infinity. Since the in-
tegrand has no poles in the region encompassed by this rectangle, the
integral over the closed path vanishes. On the new right-hand edge,
the integrand decays exponentially with L and so the limit of the inte-
gral over this edge tends to 0. On the top edge (and similarly, on the
bottom one), we estimate as follows,∣∣∣∣∣
∫ ∞+it±iNd

s+(σa−ρ)±iNd

(
N + 1

2

n

)z−s
dz

z − s
dz

∣∣∣∣∣ ≤ 1

Nd

∫ ∞
σ+(σa−ρ)

(
N + 1

2

n

)x−σ
dx

=
1

Nd

∫ ∞
σ+(σa−ρ)

e
(x−σ) log

(
N+1

2
n

)
dx

=
1

Nd

1

− log
(
N+ 1

2

n

)e(σa−ρ) log

(
N+1

2
n

)
.

The expression log
(
N+ 1

2

n

)
is minimized when n = N + 1. So

| log

(
N + 1

2

n

)
| ≥ − log(1− 1

2N + 2
)

>
1

2(N + 1)
.
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Hence, we can estimate the tail of the series by∣∣∣∣∣
∞∑

n=N+1

ann
−s
∫
RHE

(
N + 1

2

n

)z−s
1

z − s
dz

∣∣∣∣∣ .
∞∑

n=N+1

|an|
nσ

N1−d
(
N + 1

2

n

)σa−ρ
= N1−d

(
N +

1

2

)σa−ρ ∞∑
n=N+1

|an|
nσ+σa−ρ

. N−1,

since
∑ |an|

nσ+σa−ρ
converges.

If n ≤ N , we use Cauchy’s theorem again, but now with a rectan-
gular path whose right-hand edge is RHE and whose width L tends to
infinity. The residue theorem now implies that∫

�

(
N + 1

2

n

)z−s
1

z − s
dz = 2πi.

The integrand decays exponentially on the left-hand edge, and so the
integral over that edge tends to zero. As for the top edge (and also the
bottom one)∣∣∣∣∣
∫ s+(σa−ρ)±iNd

−∞+it±iNd

(
N + 1

2

n

)z−s
dz

z − s
dz

∣∣∣∣∣ ≤ 1

Nd

∫ σ+(σa−ρ)

−∞

(
N + 1

2

n

)x−σ
dx

=
1

Nd

∫ σ+(σa−ρ)

−∞
e

(x−σ) log

(
N+1

2
n

)
dx

=
1

Nd

1

log
(
N+ 1

2

n

)e(σa−ρ) log

(
N+1

2
n

)

≤ N−d
1

log
(
N+ 1

2

N

) (N + 1
2

n

)σa−ρ

. N1−d
(
N + 1

2

n

)σa−ρ
. N−1n−σa+ρ

Thus,

N∑
n=1

ann
−s
∫
RHE

(
N + 1

2

n

)z−s
1

z − s
dz = 2πi

N∑
n=1

an
ns

+O(N−1n−σa+ρ)
N∑
n=1

|an|
nσ

= 2πi
N∑
n=1

an
ns

+O(N−1),
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where we used boundedness of the partial sums of the convergent series∑
n

|an|
nσ+σa−ρ

. We have shown that 1
2πi

∫
RHE

g(z) dz is close to both the
partial sum of the Dirichlet series and f(s) (and the error is as in (5.2),
and does not depend on s). �

The promised equality of the two new abscissae is now an immediate
corollary.

Corollary 5.5. The equality σb = σu holds for any Dirichlet se-
ries.

Note, however, that the above corollary does not imply that if a
Dirichlet series converges to a bounded function in some half-plane, it
will converge uniformly in that half-plane. We only know that it will
converge uniformly in every strictly smaller half-plane.

Remark 5.6. The function g(z) used in the proof of the theorem
above comes from Perron’s formula which can be restated as (in the
special case of x = N + 1

2
)∑

n≤N

ann
−s =

1

2πi

∫ σ+it+iT

σ+it−iT
f(z)

(N + 1
2
)z−s

z − s
dz + eN,T ,

where eN,T is an error term that comes from not taking the limit in T .
One can also prove this formula using the estimates above.

5.2. The Bohr correspondence

Bohr’s idea was to use the following correspondence between Dirich-
let series and power series in infinitely many variables. For a positive
integer with prime factorization n = pk11 . . . pkll , we define

zr(n) := zk11 . . . zkll .

We have an isomorphism between formal power series in infinitely
many variables z1, z2, . . . and Dirichlet series, given by

B :
∑
n

anz
r(n) 7→

∑
n

ann
−s. (5.7)

We shall write Q for the inverse of B:

Q :
∑
n

ann
−s 7→

∑
n

anz
r(n). (5.8)

The map B is an evaluation homomorphism — indeed, we evaluate
the power series on the one-dimensional set {(zi) : zi = p−si }. It is
clearly onto, and it has a trivial kernel because the right-hand side is
0 iff all the coefficients vanish.
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For finite series, we can norm both spaces so that B will be isomet-
ric. Indeed, we have

lim
T→∞

1

2T

∫ T

−T

∣∣∣∣ N∑
n=1

ann
−it
∣∣∣∣2 dt =

N∑
n=1

|an|2

=

∫
T∞

∣∣∣∣ N∑
n=1

ane
2πit·r(n)

∣∣∣∣2 dt. (5.9)

By T∞ we mean the infinite torus

T∞ = {(e2πit1 , e2πit2 , . . . ) : 0 ≤ tj < 1 ∀j ∈ N+}

which we identify with the infinite product

[0, 1)× [0, 1)× · · ·

on which we put the product probability measure of Lebesgue measure
on each interval.

We shall investigate when (5.9) holds for infinite sums in Theorem
6.39.

Flesh this section out.

5.3. Bohnenblust-Hille Theorem

We will now proceed to show that σa−σb ≤ 1
2
, and that this bound

is sharp. Originally, Hille and Bohnenblust exhibited an example of a
Dirichlet series for which equality holds in the above inequality. Their
construction was extremely complicated.

Instead of going through their construction, we shall show that
such an example exists using a probabilistic method. This is a non-
constructive method, used in other fields, in particular in combina-
torics/graph theory.

Before describing the probabilistic method we mention two anal-
ogous methods: the “cardinality method” and the “Baire category
method”. Recall that one can prove the existence of transcendental
numbers by showing that there are only countably many algebraic num-
bers (and uncountably many real numbers). This is much easier than
proving that a concrete number is transcendental. Similarly, the ex-
istence of a nowhere differentiable continuous function on an interval
I can be proved by showing that the set of all continuous functions
with a derivative at at least one point is of the first category (and thus
cannot equal the complete metric space of all continuous function on
I). The construction of a particular example is again fairly technical.
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The probabilistic method is similar in spirit. Instead of exhibiting
a concrete example of an object with some given property, we con-
sider some set S of objects and equip it with a convenient probability
measure. We strive to show that a randomly chosen object will have
the desired property with a non-zero probability. Although it might
seem that this will rarely work, the probability method has been very
successful, especially when examples with the given property have a
complicated structure or description.

In our case, we will need to consider random series of functions of
the form

fε(s) =
∞∑
n=1

εnann
−s,

where {εn} is a Rademacher sequence, that is, a sequence of indepen-
dent random variables, such that each εn ∈ {±1} and Prob (εn = 1) =
Prob (εn = −1) = 1/2. One can also consider the random series

fω(s) =
∞∑
n=1

ane
inωnn−s,

where ω = {ωn}∞n=1 is a sequence of random variables that are in-
dependent and such that each ωn is uniformly distributed on [0, 2π].
Both {εn} and {ωn} are i.i.d.’s, that is, independent and identically
distributed.

When we have a Rademacher sequence, we use E to denote the
expectation, that is the average over all choices of sign, of some function
that depends on the sequence:

E[
∑

εngn].

If the sequence is finite of length K, this just means adding up all
2K choices and dividing by 2K . If the sequence is infinite, one must
replace this by integrating over the space {−1, 1}∞ with the product
probability measure.

Note that a sequence of i.i.d.’s has a canonical probability distribu-
tion associated to it, namely the product probability. Heuristically, to
choose a random sequence, we can choose it element by element, and
since these elements should be independent, we arrive at the product
probability.

As an example of a theorem about random Dirichlet series we prove
the following proposition.

Proposition 5.10. Let {an} be a sequence of complex numbers and
let {ωn}∞n=1 be sequence of i.i.d.’s which are uniformly distributed on



5.3. BOHNENBLUST-HILLE THEOREM 45

[0; 2π]. Denote fω(s) :=
∑∞

n=1 ane
inωnn−s, as above. Then there exists

some σ̃ = σ̃({an}) such that σc(fω) = σ̃ almost surely.

Proof: Given a sequence of random variables, a tail event is an
event whose incidence is not changed by changing the values assumed
by any finitely many elements of the sequence. The zero-one law of
probability asserts that any tail event associated to a sequence of i.i.d.’s
happens with probability either 0 or 1 [Kah85, p.7]. Consider the
events Ba = {fω : σc(fω) ≤ a} for a ∈ R. These are clearly tail events.
Let

σ̃ := inf {a : Prob (Ba) = 1},

where we agree that inf ∅ = ∞. Since the events Ba are nested, we
have

Prob (Ba) = 0, for all a < σ̃,

Prob (Ba) = 1, for all a > σ̃,

and {fω : σc(fω) = σ̃} =
(⋂

nBσ̃+ 1
n

)
\
(⋃

nBσ̃− 1
n

)
,

which easily implies that σ̃ has the desired property. �

Let f be a holomorphic function on a domain Ω ⊂ C. We say that
∂Ω is a natural boundary for f , if no point z0 ∈ ∂Ω has a neighborhood
to which it can be holomorphically continued. Proposition 5.10 can be
strengthened in the following way [Kah85, p. 44].

Theorem 5.11. Let ωn and σ be as above. Then, with probability
1, the line {Re s = σ} is the natural boundary for the Dirichlet series∑
ane

iωnn−s.

We will need the following theorem, which we shall prove as Corol-
lary 5.23 below. We shall use multi-index notation, where α ∈ Zr —
see Appendix 11.1. We shall use Tr to denote the r-torus, which by
an abuse of notation we shall identify with both {(e2πit1 , · · · , e2πitr) :
0 ≤ tj ≤ 1 ∀ j} and {(t1, · · · , tr) : 0 ≤ tj ≤ 1 ∀ j}.

Theorem 5.12. There exists a universal constant C > 0 such that
for every r ∈ N+, every N ≥ 2, and every choice of coefficients cα ∈ C,
with |α| = |α1|+ · · ·+ |αr| ≤ N , there exists some choice of signs such
that

sup
t∈Tr

∣∣∣∣ ∑
|α|≤N

±cαe2πi(α1t1+···+αrtr)
∣∣∣∣ ≤ C

[
r logN

∑
|cα|2

] 1
2
. (5.13)
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By Fubini’s theorem and the orthogonality of {e2πiα·t}, for any
choice of signs ∫

Tr

∣∣∣∣∑
α

±cne2πiα·t
∣∣∣∣2 dt =

∑
α

|cα|2,

so the left-hand side of (5.13) is at least
∑

α |cα|2. The theorem says
that for some choice of signs, this estimate is only off by a factor of√
r logN .

Note that choosing all cα positive and using the Cauchy-Schwarz
inequality yields the following much cruder estimate:

sup
t∈Tr

∣∣∣∣ ∑
|α|≤N

cαe
i(α1t1+···+αrtr)

∣∣∣∣ =
∑
α

cα

≤
√
CN

(∑
α

|cα|2
) 1

2

,

where CN is the number of terms, roughly N r, if N � r.

We will need the following lemma.

Lemma 5.14. Let

P (t) =
∑
|α|≤N

cαe
2πi(α1t1+···+αrtr)

be a trigonometric polynomial on Tr. If P is real, then there ex-
ists an r-dimensional cube I ⊂ Tr of volume (N + 1)−2r on which
|P (t1, . . . , tr)| ≥ 1

2
‖P‖∞.

Proof: By multiplying P by (−1), if necessary, we may assume that
there exists θ = (θ1, . . . , θr) ∈ Tr such that

P (θ) = ‖P‖∞.

By the mean value theorem, we conclude that for any t = (t1, . . . , tr) ∈
Tr, there exists θ̃ belonging to the segment connecting t and θ such
that

P (t)− P (θ) =
r∑
j=1

(tj − θj)
∂P

∂tj
(θ̃),

Thus,

|P (t)− P (θ)| ≤ max
j
|tj − θj|

r∑
j=1

∣∣∣∣∂P∂tj (θ̃)

∣∣∣∣ (5.15)
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There exists a choice of signs sj ∈ {±1} so that

d

dx |x=0

P (θ̃1 + s1x, . . . , θ̃r + srx) =
∑
j

∣∣∣∣∂P∂tj (θ̃)

∣∣∣∣ .
We fix this choice, and define a trigonometric polynomial of degree at
most N

Q(x) = P (θ̃1 + s1x, . . . , θ̃r + srx).

Then Q(x) =
∑

k bke
ikx and Q′(x) =

∑
k ikbke

ikx. Note that by inte-
grating against e−ikx we obtain |bk| ≤ ‖Q‖∞, and hence

|Q′(0)| ≤
∑
k

|kbk|

≤ max
k
|bk|

N∑
k=−N

k

≤ ‖Q‖∞N(N + 1)

≤ ‖P‖∞N(N + 1).

Thus, we can continue our estimate from (5.15)

|P (t)− P (θ)| ≤ ‖P‖∞N(N + 1) sup
j
|tj − θj|. (5.16)

Since |P (θ)| = ‖P‖∞, whenever the right-hand side of (5.16) is

bounded by 1
2
‖P‖∞, we have P (t) ≥ ‖P‖∞

2
. This will occur if

sup
j
|tj − θj| ≤

1

2N(N + 1)
.

The set of such t’s is a cube of volume [N(N + 1)]−r ≥ (N + 1)−2r. �

Theorem 5.17. Let {Pn}Kn=1 be a finite set of complex trigono-
metric polynomials in r variables of degree less than or equal to N ,
with N ≥ 1. Let Q(t1, . . . , tr) =

∑
n εnPn(t1, . . . , tr), where εn is a

Rademacher sequence. Then

Prob

(
‖Q‖∞ ≥

[
32r log γN

∑
n

‖Pn‖2
∞

] 1
2

)
≤ 2

γ
,

for all real γ ≥ 8.

Proof: First suppose that all Pn’s are real, let τ =
∑

n ‖Pn‖2
∞ and

M = ‖Q‖∞ (here M = M(ε) is a random variable). Let λ be an
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arbitrary real number. Then, using the inequality 1
2
(ex + e−x) ≤ e

x2

2

yields

E
(
eλQ(t)

)
= E

(
eλ
∑
n εnPn(t)

)
= E

(∏
n

eλεnPn(t)

)
=

∏
n

E
(
eλεnPn(t)

)
=

∏
n

(
1

2
[eλPn(t) + e−λPn(t)]

)
≤

∏
n

eλ
2 P

2
n(t)

2

≤
∏
n

e
λ2

2
‖Pn‖2∞

= e
λ2

2

∑
n ‖Pn‖2∞

= e
τλ2

2 . (5.18)

By Lemma 5.14, there exists an interval I = I(ε) ⊂ Tr of volume at
least (N + 1)−2r such that |Q| ≥ 1

2
‖Q‖∞ of I. For fixed ε = {εn} we

thus have

e
λM(ε)

2 ≤ 1

vol(I(ε))

∫
I(ε)

eλQ(t) + e−λQ(t) dt

≤ (N + 1)2r

∫
Tr
eλQ(t) + e−λQ(t) dt

Taking the expected value and using estimate (5.18) yields

E
(
e
λM
2

)
≤ (N + 1)2rE

(∫
Tr
eλQ(t) + e−λQ(t) dt

)
= (N + 1)2r

∫
Tr

E
(
eλQ(t) + e−λQ(t)

)
dt

≤ (N + 1)2r

∫
Tr

2e
τλ2

2 dt

= 2(N + 1)2re
τλ2

2

= e
τλ2

2
+log 2+2r log(N+1)

Thus,

E
(
e
λM
2
−λ

2τ
2
−log 2−2r log(N+1)

)
≤ 1,
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and hence, by Chebyshev’s inequality,

Prob
(
e
λM
2
−λ

2τ
2
−log 2−2r log(N+1) ≥ γ

)
≤ 1

γ
. (5.19)

The event on the left-hand side of (5.19) is equivalent to

λM − λ2τ

2
− log 2− 2r log(N + 1) ≥ log γ. (5.20)

Choose λ =
√

2
τ

log[2γ(N + 1)2r], then, after algebraic manipulations,

(5.20) becomes

M

√
2

τ
log[2γ(N + 1)2r] ≥ 4 log[2γ(N + 1)2r],

which is the same as

M ≥ 2
√

2τ
√

log[2γ(N + 1)2r]. (5.21)

For γ ≥ 8 we have
2γ(N + 1)2r ≤ (γN)2r,

so (5.21) will hold if

M ≥ 2
√

2τ
√

log[γN ]2r

= 4
√
rτ log[γN ].

Recalling that M = ‖Q‖∞ and τ =
∑

n ‖Pn‖2 we obtain

Prob

(
‖Q‖∞ ≥ 4

[
r log[γN ]

∑
n

‖Pn‖2

] 1
2

)
≤ 1

γ
,

when Q is real.
If Q is complex and

‖Q‖∞ ≥ 4
[
2r log[γN ]

∑
n

‖Pn‖2
∞
] 1

2 ,

then one of the two following inequalities must hold:

‖Re Q‖∞ ≥ 4

[
r log[γN ]

∑
n

‖Re Pn‖2
∞

] 1
2

,

‖Im Q‖∞ ≥ 4

[
r log[γN ]

∑
n

‖Im Pn‖2
∞

] 1
2

.

But since these inequalities involve real polynomials, either of them
happens with probability at most 1

γ
, by the real case. The probability

that at least one of them happens is thus at most 2
γ
. �
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Corollary 5.22. Let N ≥ 2, and let cα ∈ C be given for every
α = (α1, . . . , αr) ∈ Zr with |α| ≤ N . Then, for any γ ≥ 8, there exists
C > 0 such that

Prob

∥∥∥∥ ∑
|α|≤N

εαcαe
iα·t
∥∥∥∥
∞
≥ C(r logN)

1
2

[ ∑
|α|≤N

|cα|2
] 1

2

 ≤ 2

γ
.

Proof: Fix γ ≥ 8, and choose C > 0 such that C2 ≥ 32
(

1 + log γ
logN

)
.

Let Pα(t) = cαe
iα·t and use Theorem 5.17. �

Corollary 5.23. There exist a choice of signs {εα} such that∥∥∥∥ ∑
|α|≤N

εαcαe
iα·t
∥∥∥∥
∞
≤ C(r logN)

1
2

[ ∑
|α|≤N

|cα|2
] 1

2

.

Proof: For any γ ≥ 8, the probability that a random series will not
have the property is at most 2

γ
< 1. �

Theorem 5.24. (H. Bohr) For any Dirichlet series σa − σu ≤ 1
2
.

Proof: Let ρ > σu, then
∑∞

n=1 ann
−s converges uniformly in Ωρ.

Fix s ∈ C with Re s = ρ+ 1
2

+ ε. By the Cauchy-Schwarz inequality,∑
n

|ann−s| =
∑
n

|an|n−(ρ+ 1
2

+ε)

≤
(∑

n

|an|−2ρ

) 1
2
(∑

n

n−(1+2ε)

) 1
2

, (5.25)

where the second sum converges. By uniform convergence, there exists
K > 0 such that for every t ∈ R and N ∈ N+∣∣∣∣∣

N∑
n=1

ann
−(ρ+it)

∣∣∣∣∣ ≤ K.

Consequently,

K2 ≥
∣∣∣∣ N∑
n=1

ann
−(ρ+it)

∣∣∣∣2
=

N∑
n=1

|an|2n−2ρ + 2 Re
∑

1≤n<m≤N

anam(nm)−ρeit log m
n .
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Taking the normalized integral yields

K2 ≥
N∑
n=1

|an|2n−2ρ + 2 Re
∑

1≤n<m≤N

anam(nm)−ρ −
∫ T

−T
eit log m

n dt.

Taking the limit as T tends to ∞, the mixed terms tend to 0 and so
we conclude that

N∑
n=1

|an|2n−2ρ ≤ K2,

for all N ∈ N+. Thus the first sum on the right-hand side of (5.25) is
bounded, and so

∑
n |ann−s| converges. Thus, σa ≤ 1

2
+ ρ + ε. Since

this is true for every ρ > σu and ε > 0, we get σa ≤ 1
2

+ σu. �

Theorem 5.26. (Bohnenblust-Hille, 1931) There exist a
Dirichlet series

∑∞
n=1 ann

−s for which σu = 1
2

and σa = 1.

We shall present a probabilistic proof, due to H. Boas [Boa97].
Proof: Each an will be an element of {±1, 0} and the coefficients

will be constructed in groups, starting with k = 2. To construct the kth

group, choose a homogeneous polynomial Qk of degree k in 2k variables
with coefficients εj ∈ {±1}, with j = (j1, . . . , j2k),

Qk(z1, z2, . . . , z2k) =
∑
|j|=k

εjz
j1
1 . . . z

j
2k

2k

so that

‖Qk‖∞ ≤ C

[
2k log k

∑
|j|=k

|εj|2
] 1

2

.

This is possible, by Corollary 5.23. By Lemma 5.29, the number of

(monic) monomials of degree k in 2k variables is
(

2k+k−1
k

)
. We conclude

that

‖Qk‖∞ ≤ C

[
2k log k

(
2k + k − 1

k

)] 1
2

.

We convert the Qk’s into Dirichlet series as in (5.7)

fk(s) := (BQk)(s) =
∑
|j|=k

εj

(
pj1

2k
. . . p

j
2k

2k+2k−1

)−s
,

and let f =
∑∞

k=2 fk, thought of as a Dirichlet series. Then the coef-
ficients of f lie in {±1, 0}, since each n can appear in at most one fk.

Claim 1: σa(f) = 1.
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Proof: In fk, the number of non-zero coefficients is(
2k + k − 1

k

)
≥ (2k)k

k!
≥ 2k

2

kk
.

By the prime number theorem, pk ≈ k log k, so that p2k+1 ≤M2kk, for
some M > 1. Hence any n that has a non-zero coefficient in fk must
satisfy

n ≤
(
M2kk

)k
.

Thus, we can estimate for σ < 1,∑
n

|an|n−σ ≥
∑
k

2k
2

kk
(
M2kk

)−kσ
(5.27)

=
∑
k

2k
2(1−σ)

kk(1+σ)Mkσ

By the root test (or ratio test), (5.27) diverges for σ < 1.
Since for σ > 1 the series converges absolutely (by comparison to∑
n n
−σ), we conclude that σa = 1.

Claim 2: σu(f) = 1
2
.

Proof: Fix ε > 0, let σ = 1
2

+ ε, and note that

|fk(σ + it)| = |Qk(p
−s
2k
, . . . , p−s

2k+1−1
)|

=

∣∣∣∣∣∣
∑
|j|=k

εj
(
pj1

2k
. . . p

j
2k

2k+1−1

)σ(
pj1

2k
. . . p

j
2k

2k+1−1

)it∣∣∣∣∣∣ .
Thus,

sup
t
|fk(σ + it)| ≤ sup

|zi|=p−σ
2k−1+i

, i=1,...,2k
|Qk(z1, . . . , z2k)|

≤ p−kσ
2k

sup
|zi|=1

|Qk|

≤ Cp−kσ
2k

[
2k log k

(
2k + k − 1

k

)] 1
2

(5.28)

. (2kk log 2)−kσ
[
2k log k2k

2
] 1

2

= (k log 2)−kσ2k
2(−σ+ 1

2
+ 1

2k
)
√

log k

= (k log 2)−kσ2k
2(−ε+ 1

2k
)
√

log k.

The series
∑

k |fk| is thus estimated by a summable series. Hence,∑
k fk converges to a holomorphic function which is bounded in Ω1/2+ε
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and equal to f in Ω1. Letting ε → 0+ yields, by Theorem 5.4, σu =
σb ≤ 1

2
. Thus, by Theorem 5.24 and Claim 1, σu = 1

2
. �

Lemma 5.29. The number of monomials of degree m in n variables
is
(
n+m−1

m

)
.

Proof: From a linear array of n+m−1 objects, choose n−1 and
color them black. Let the power of zi be the number of non-colored
objects between the (i− 1)st black one and the ith one. 2

Exercise 5.30. Fill in the details that the series in (5.28) con-
verges.

Exercise 5.31. Show that for all x ∈ [0, 1
2
], there is a Dirichlet

series such that σa − σu is exactly x.
(Hint: Although Bohnenblust and Hille did not spot it, this result

is a one-line consequence of Theorem 5.26. If you find the right line!)

5.4. Notes

The proofs of the Bohnenblust-Hille theorem in Section 5.3 and
Bohr’s Theorem 5.4 are based on H. Boas’s article [Boa97]. The orig-
inal proofs are in [BH31] and [Boh13b], respectively. Theorem 5.24
was proved in [Boh13a].

Talk about recent advances, in particular [DFOC+11].





CHAPTER 6

Hilbert Spaces of Dirichlet Series

6.1. Beurling’s problem: The statement

We will motivate our discussion by considering a problem posed by
A. Beurling in 1945. If we set β(x) =

√
2 sin(πx), the set

{β(nx) : n ∈ N+}

forms an orthonormal basis of L2([0; 1]).

Proposition 6.1. If ψ : R+ → C is 2-periodic, and {ψ(nx)}n∈N+

is an orthonormal basis for L2([0; 1]), then ψ = eiθβ, for some θ ∈ R.

Proof: Extend ψ to an odd function on R. Then ψ is odd and
2-periodic, so we can expand it into a sine series ψ(x) =

∑∞
k=1 ckβ(kx).

Since {ψ(nx)}n∈N+ is an orthonormal basis, we have

1 = ‖β(mx)‖2 =
∞∑
n=1

|〈β(mx), ψ(nx)〉|2

=
∞∑
n=1

|〈β(mx),
∞∑
k=1

ckβ(nkx)〉|2

=
∞∑
n=1

∣∣∣∣ ∑
k; kn=m

ck

∣∣∣∣2
=

∑
k|m

|ck|2.

Letting m = 1, we obtain |c1|2 = 1. Thus, for m ≥ 2, we have 1 + · · ·+
|cm|2 = 1 (where the middle terms are non-negative) and so |cm| = 0.
�

Definition 6.2. Let {vn} be a set of vectors in a Hilbert space
H. We say that {vn} is a Riesz basis , if span {vn} = H and the Gram
matrix G given by

Gij := 〈vj, vi〉
55
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is bounded and bounded below, that is, for all {an}∞n=1 ∈ `2:

c1

∞∑
j=1

|aj|2 ≤
∞∑

i,j=1

aiajGij ≤ c2

∞∑
j=1

|aj|2. (6.3)

Proposition 6.4. The set {vn}∞n=1 is a Riesz basis if and only if
the map

T :
∞∑
n=1

anen 7→
∞∑
n=1

anvn

is bounded and invertible, where {en} is an orthonormal basis for H.

Proof: We have∥∥∥∥T∑
n

anen

∥∥∥∥2

=

∥∥∥∥∑
n

anvn

∥∥∥∥2

=
∑
m,n

anamGmn

and ∥∥∥∥∑
n

anen

∥∥∥∥2

=
∑
n

|an|2.

Thus condition (6.3) is equivalent to boundedness of T from below and
above. Moreover, T is onto if and only if the span of {vn} is dense in
H. The claim follows by recalling that a map is invertible if and only
if it is bounded, bounded from below, and onto. �

Here is Beurling’s question.

Question 6.5. (Beurling) For which odd 2-periodic functions ψ :
R→ C does the sequence {ψ(nx)}∞n=1 form a Riesz basis for L2([0; 1])?

Remark 6.6. A frame is a set of vectors {vn}∞n=1 in H such that
for some c1, c2 > 0

c1‖v‖2 ≤
∞∑
n=1

|〈v, vn〉|2 ≤ c2‖v‖2

holds for every v ∈ H. (Unlike a Riesz basis, they do not need to be
linearly independent).

The following problem attracted a lot of attention; it has many
equivalent reformulations.

Conjecture 6.7. (Feichtinger) Suppose that {vn}∞n=1 is a set of
unit vectors in H that form a frame. Does it follow that {vn}∞n=1 is a
finite union of Riesz bases?

The conjecture was proved, in the affirmative, by A. Marcus, D.
Spielman and N. Srivastava [MSS15].
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Beurling’s idea was to consider the Hilbert space of Dirichlet series

H2 :=

{ ∞∑
n=1

ann
−s :

∑
n

|an|2 <∞
}
. (6.8)

Let us first observe that for any f ∈ H2 we have σa ≤ 1
2
. Indeed, by

the Cauchy-Schwarz inequality,∣∣∣∣∑
n

ann
−s
∣∣∣∣ ≤ (∑

n

|an|2
) 1

2
(∑

n

n−2σ

) 1
2

< ∞,

whenever 2σ > 1. In fact, the above estimate shows that for any
s0 ∈ Ω1/2, the map H2 3 f 7→ f(s0) is a bounded linear functional.
Therefore it is given by the inner product with a function ks0 ∈ H2,
the so-called reproducing kernel at s0, i.e.,

f(s0) = 〈f, ks0〉 for all f ∈ H2.

For any Hilbert (or Banach) space of analytic functions X , we define
its multiplier algebra by

Mult (X ) =
{
ϕ; ϕf ∈ X , ∀f ∈ X

}
.

It is easy to check that the following hold

• 1 ∈ X =⇒ Mult (X ) ⊂ X ,
• Mult (X ) is an algebra.

Clearly, multiplication by k−s is isometric on H2, for all k ∈ N. Con-
sequently, every finite Dirichlet series lies in Mult (H2).

Also, note that sups∈Ω1/2
|k−s| = k−

1
2 → 0 as k tends to ∞. Thus,

‖f‖Mult (H2) 6. ‖f‖H∞(Ω1/2).
The following result — multiplication operators are bounded if they

are everywhere defined — is true in great generality (see Section 11.4).

Proposition 6.9. The multiplication operator Mϕ is bounded on
H2 for every ϕ ∈ Mult (H2).

Proof: Multiplication operators on a Banach space of functions in
which norm convergence implies pointwise convergence (or at least a.e.
convergence) are easily seen to be closed. Indeed, suppose that fn → f
and Mϕfn → g. Then, for every s ∈ Ω1/2, fn(s) → f(s) and so
(Mϕfn)(s) = ϕ(s)fn(s) → ϕ(s)f(s) = (Mϕf)(s). On the other hand,
Mϕfn(s) → g(s), for all s ∈ Ω1/2. We conclude that (Mϕf)(s) = g(s)
for all s ∈ Ω1/2 and hence Mϕf = g. Thus, Mϕ is closed. Hence,
Mϕ is an everywhere defined closed linear operator on a Banach space,
and the closed graph theorem states that such operators are necessarily
bounded. �
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Now let ψ be an odd 2-periodic function on R. We can ex-
pand it into a Fourier series ψ(x) =

∑∞
n=1 cnβ(nx). The sequence

{ψ(kx)}k∈N+ is a Riesz basis, if and only if it spans L2 and the oper-
ator T :

∑
k akβ(kx) 7→

∑
k akψ(kx) is bounded and bounded below.

Denote ψk(x) := ψ(kx) and analyze the condition on T :∥∥∥∥∑
k

akψk

∥∥∥∥2

=

∥∥∥∥∑
k

ak
∑
n

cnβ(nkx)

∥∥∥∥2

=

〈∑
k,n

akcnβ(nkx),
∑
j,m

ajcmβ(mjx)

〉
=

∑
k,n,j,m; kn=jm

akcnajcm,

and thus we want ∑
k,n,j,m; kn=jm

akcnajcm ≈
∑
k

|ak|2. (6.9)

Let us define auxilliary functions in H2:

g(s) :=
∑
n

cnn
−s, f(s) :=

∑
k

akk
−s.

We have

‖gf‖2
H2 =

〈∑
n,k

cnak(nk)−s,
∑
m,j

cmaj(mj)
−s
〉

=
∑

k,n,j,m; kn=jm

akcnajcm,

and so the condition (6.9) holds, if and only if ‖gf‖H2 ≈ ‖f‖H2 , i.e.,
when Mg is bounded and bounded below.

Let us also look the density of the span of {ψn}n. It is equivalent
to

span

{∑
n

cnβ(nkx)

}
k∈N+

= L2([0; 1]) ⇐⇒ span

{∑
n

cnenk

}
k∈N+

= `2(N)

⇐⇒ span

{∑
n

cn(nk)−s
}
k∈N+

= H2

⇐⇒ span

{
k−sg(s)

}
k∈N+

= H2.

The last condition implies that range of Mg is dense. But since Mg is
bounded below, it has a closed range and thus is onto. Therefore Mg

is invertible, or M1/g is bounded. Conversely, if Mg is invertible, the
image of the dense set span {k−s}k∈N+ is dense, and so the density of
span {ψk}k follows by the above equivalences. We have proved:
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Proposition 6.10. Let ψ(x) =
∑∞

n=1 cnβ(nx) be a odd 2-periodic
function on R. Then {ψ(kx)}k∈N+ is a Riesz basis, if and only if both
g and 1/g are multipliers of H2, where g(s) =

∑∞
n=1 cnn

−s.

In view of Proposition 6.10, Beurling’s question 6.5 would be an-
swered if we could answer the following question:

Question 6.11. What are the multipliers of H2?

6.2. Reciprocals of Dirichlet Series

Proposition 6.12. If f(s) =
∑∞

n=1 ann
−s is a Dirichlet series that

converges somewhere and satisfies a1 6= 0, then g(s) = 1
f(s)

is also

given by the sum of a somewhere-convergent Dirichlet series. Moreover,
σb(g) = inf{ρ : inf |f |

∣∣
Ωρ
> 0}.

Proof: By rescaling, we may assume that a1 = 1, and by shifting
the series so that σa < 0, we have sup |an| ≤M . We will construct the
coefficients bk of g inductively. Clearly, b1 = 1. For n ≥ 2, we have

0 = f̂ g(n) =
∑
k|n

an/kbk. (6.13)

Equations (6.13) can be solved for bk, first when k is a prime, then a
power of a prime, then when k has two distinct prime factors, and so
on.
Claim: If n = pi11 . . . p

ir
r , then |bn| ≤ n2M |i|.

Proof: For n = 1, bn = 1 and so the claim holds. Assume induc-
tively that the claim holds for all m < n. By (6.13), we have

|bn| ≤
∑

k|n, k≥2

|akbn/k|

≤ M
∑
k≥2

bn/k

≤ M
∑
k≥2

(n
k

)2

M |i|−1

≤ M |i|n2
∑
k≥2

1

k2

= M |i|n2

(
π2

6
− 1

)
,

and the claim follows, since π2

6
< 2.
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Since |i| ≤ log2 n, we obtain

|bn| ≤ M |i|n2

≤ M log2 nn2

= nlog2Mn2

= n2+log2M .

Hence, for Re s > 3 + log2M , the Dirichlet series
∑

n bnn
−s converges

absolutely.
Now, g is bounded in Ωρ, if and only if inf |f |

∣∣
Ωρ
> 0. As g is given

by a convergent Dirichlet series in Ω3+log2M , by Theorem 5.4,

σb(g) ≤ inf{ρ : inf |f |
∣∣
Ωρ
> 0}.

The reverse inequality is obvious. �

Note that the condition a1 6= 0 is necessary, since a1 = limσ→∞ f(σ).

6.3. Kronecker’s Theorem

Theorem 6.14. (Kronecker)

(1) Let θ1, . . . , θk ∈ R be linearly independent over Q, and let
α1, . . . , αk ∈ R, T, ε > 0 be given. Then there exist t > T
and q1, . . . , qk ∈ Z such that

|tθj − αj − qj| < ε, 1 ≤ j ≤ k.

(2) Let 1, θ1, . . . , θk ∈ R be linearly independent over Q, and let
α1, . . . , αk ∈ R, T, ε > 0 be given. Then there exist N 3 n > T
and q1, . . . , qk ∈ Z such that

|nθj − αj − qj| < ε, 1 ≤ j ≤ k.

Proof: (1) =⇒ (2): Assume that all θj’s lie in (−M,M). Fix 0 <
ε < 1, and apply (1) to the (k+1)-tuples θ1, . . . , θk, 1 and α1, . . . , αk, 0,
T = N + 1 and ε/(M + 1). Let n = qk+1, then |t − n| < ε/(M + 1).
Thus, for 1 ≤ j ≤ k, we have

|nθj − αj − qj| ≤ |n− t|θj + |tθj − αj − qj|

<
Mε

M + 1
+

ε

M + 1
.

To prove (1), define F (t) := 1 +
∑k

j=1 e
2πi[θjt−αj ]. We need to

show that lim supt→∞ |F (t)| = k + 1. Fix m ∈ N, and define
α = (0, α1, . . . , αk), θ = (0, θ1, . . . , θk) and j = (j0, . . . , jk). Then

[F (t)]m =
∑

|j|=j0+···+jk=m

aje
2πitγj ,
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where aj = m!
j!
e−2πij·α and γj = j · θ. Indeed, there are m!

j!
ways to get∏

l e
2πitjlθl in the product, and, by independence of θj’s over Q, distinct

j’s yield distinct γj’s. Also,
∑
|j|=m |aj| = (k + 1)m, since there are

(k + 1) terms, each with a coefficient of modulus 1.
Suppose that lim supt→∞ F (t) < k + 1. Then there exist M > 0

and λ < k + 1 such that |F (t)| ≤ λ for all t > M . Consequently,

lim sup
T→∞

1

T

∫ T

0

|F (t)|m dt ≤ λm.

Since [F (t)]m is a finite combination of exponentials,

|aj| =

∣∣∣∣ lim
T→∞

1

T

∫ T

0

[F (t)]me−2πitγj dt

∣∣∣∣
≤ lim sup

T→∞

1

T

∫ T

0

|F (t)|m dt

≤ λm. (6.15)

Note that there are
(
m+k
k

)
≤ (m+ 1)k possible j’s. Thus, summing the

inequality (6.15) over all j’s yields

(k + 1)m =
∑
|j|=m

|aj|

≤ (m+ 1)kλm,

a contradiction for large m. �

Remark 6.16. Let q1, . . . , qk be distinct primes. Then
log q1, . . . , log qk are linearly independent over Q.

Proof: If not, then for some rational numbers r1, . . . , rk we have∑
j rj log qk = 0 and by clearing the denominators, there exists integers

n1, . . . , nk so that∑
k

nk log qk = 0 =⇒
∏
k

qnkk = 1.

Thus all nk’s must be zero by the uniqueness of prime factorization. �

6.4. Power series in infinitely many variables

Recall from (5.8) that given f ∈ H2, f =
∑∞

n=1 ann
−s, we have a

formal power series in infinitely many variables

(Qf)(z) =
∞∑
n=1

anz
r(n).
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Let D∞ denote {(zi)∞i=1; |zi| < 1} — the infinite polydisk .

Proposition 6.17. If f ∈ H2 and z ∈ D∞ ∩ `2, then (Qf)(z) is
well-defined.

Proof: Using the Cauchy-Schwarz inequality, we obtain

|Qf(z)|2 ≤

(
∞∑
n=1

|an|2
)(

∞∑
n=1

|z|2r(n)

)
.

For z ∈ D∞, observe that the map n 7→ ψz(n) := z[n] is multiplicative
and satisfies |ψz(n)| ≤ 1, for all n ∈ N+. It follows that

∞∑
n=1

∣∣zr(n)
∣∣2 =

∞∏
i=1

1

1− |zi|2

=
∏
p∈P

1

1− |φ(p)|2
.

Therefore

|Qf(z)| ≤ ‖f‖H2

[
∞∏
i=1

1

1− |zi|2

]1/2

.

This is finite if z ∈ D∞ ∩ `2. �

Remark 6.18. A character on (N+, ·) is a multiplicative map from
N+ to T. A quasi-character on (N+, ·) is a multiplicative map from N+

to D. So ψz is a quasi-character.

Hilbert, in 1909, asked:

Question 6.19. Does Qf(z) make sense on a larger set than D∞∩
`2?

This was his answer. Let z = (z1, z2, . . . ), and let z(m) denote
(z1, . . . , zm, 0, 0, . . . ). Consider the sequence Fm(z) := F (z(m)); this is
called the mte-Abschnitt (or cut-off). If f ∈ H2 and F = Qf , then the
functions Fm are well-defined on D∞ by Proposition 6.17.

Proposition 6.20. (Hilbert) Suppose that there exists C > 0
such that

|Fm(z)| ≤ C ∀ z ∈ D∞, ∀ m ∈ N+.

Then, for every z ∈ D∞ ∩ c0, the limit

lim
m→∞

Fm(z) =: F (z)

exists.
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Proof: Fix z ∈ D∞ ∩ c0 and an ε > 0. Then, there exists K ∈ N
such that |zk| < ε

2C
holds for all k > K. Fix n > m > K, and consider

the function f ∈ H∞(Dn−m) given by

f(wm+1, . . . , wn) := F (z1, . . . , zm, wm+1, . . . , wn, 0, 0, . . . ).

Now, we apply the polydisk version of Schwarz’s lemma, Lemma 11.2,

to g(w) := f(w)−f(0)
2C

. Since g : Dn−m → D, we conclude that

|g(zm+1, . . . , zn)| ≤ max
i=m+1,...,n

|zi| <
ε

2C
,

so that

|f(z)− f(0)| ≤ ε

2C
· 2C = ε.

Thus, the sequence {Fm(z)}m is Cauchy. �

Definition 6.21. We define H∞(D∞) by

H∞(D∞) :=

{
F (z) =

∞∑
n=1

anz
r(n) : |Fm(z)| ≤ C, ∀ m ∈ N, z ∈ D∞

}
.

(6.22)
The norm of F ∈ H∞(D∞) is the smallest C that satisfies the inequality
in (6.22).

6.5. Besicovitch’s Theorem

Definition 6.23. (1) Let f ∈ Hol (Ωρ), let ε > 0. We say
that τ ∈ R is an ε-translation number of f , if

sup
s∈Ωρ

|f(s+ iτ)− f(s)| < ε.

We shall let E(ε, f) denotes the set of ε-translation numbers
of f .

(2) A set S ⊂ R is called relatively dense, if there exists L <
∞ such that each interval of length L contains at least one
element of S.

(3) A function f ∈ Hol (Ωρ) is uniformly almost periodic in Ωρ, if
for all ε > 0, the set of ε-translation numbers of f is relatively
dense.

Example 6.24. The function f(s) = 2−s + 3−s is uniformly almost
periodic in the half-plane Ωρ for every ρ ∈ R.

It follows from Kronecker’s theorem that for every ε > 0 there
exists an arbitrarily large ε-translation number. Indeed, let θ1 = log 2

2π
,
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θ2 = log 3
2π

and α1 = α2 = 0. Then there exists an arbitrarily large τ ∈ R
so that

dist

{
τ log 2

2π
,Z
}
< ε and dist

{
τ log 3

2π
,Z
}
< ε.

Thus,

|2−(s+iτ) − 2−s| = |2−s(e−iτ log 2 − 1)|

≤ 2−ρ2π(log 2) dist

{
τ log 2

2π
,Z
}

< Cε.

Similarly, one obtains

|3−(s+iτ) − 3−s| ≤ 3−ρ2π(log 3) dist {τ log 3

2π
,Z} < Cε.

There exists a refined version of Kronecker’s theorem that implies that
the ε-translation numbers of f are relatively dense, so f is uniformly
almost periodic. However, the claim also follows from Corollary 6.28
below.

Theorem 6.25. (Besicovitch) Suppose f(s) =
∑∞

n=1 ann
−s and

the series converges uniformly in Ωρ. Then f is uniformly almost pe-
riodic.

Lemma 6.26. Suppose f is uniformly almost periodic and uniformly
continuous in Ωρ, and let 0 < ε1 < ε2 be arbitrary. Then there exists
a δ > 0 such that for each τ ∈ E(ε1, f), the inclusion (τ − δ, τ + δ) ⊂
E(ε2, f) holds.

Proof: Let δ > 0 be such that for every 0 < δ′ < δ and z ∈ Ωρ,

|f(z + iδ′)− f(z)| < ε2 − ε1.

For any τ ′ ∈ (τ − δ, τ + δ), write τ ′ = τ + δ′ with 0 < |δ′| < δ. Then
the inequality

|f(z + iτ ′)− f(z)| ≤ |f(z + i(τ + δ′)− f(z + iτ)|+ |f(z + iτ)− f(z)|
< (ε2 − ε1) + ε1 = ε2

holds. �

Lemma 6.27. Let ε, δ > 0 and let f1, f2 be uniformly almost periodic
and uniformly continuous functions. Then the set

P = {τ ∈ E(ε, f1) : dist (τ, E(ε, f2)) < δ}
is relatively dense.
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Proof: For a uniformly almost periodic function f and ε > 0, let
L(ε, f) denote the infimum of those L > 0 such that any interval of
length L contains an ε-translation number of f . Choose K ∈ N so that
L = δK is greater than max{L( ε

2
, f1), L( ε

2
, f2)}. Write

R =
⋃
n∈Z

[
(n− 1)L, nL

)
=
⋃
n∈Z

In.

In each In there exist τ
(n)
1 ∈ E( ε

2
, f1) and τ

(n)
2 ∈ E( ε

2
, f2) and clearly

−L < τ
(n)
1 − τ

(n)
2 ≤ L. Decompose [−L,L) into 2K disjoint intervals Jl

of length δ. Since this is a finite number, there exists n0 ∈ N such that

if any interval Jl contains some point in the set {τ (n)
1 − τ (n)

2 }n∈Z, then

it contains a point in the set {τ (n)
1 − τ (n)

2 }n0
n=−n0

. Thus, for any n ∈ Z,
there exists n′ ∈ {−n0, . . . , n0} such that∣∣∣(τ (n)

1 − τ (n)
2 )− (τ

(n′)
1 − τ (n′)

2 )
∣∣∣ < δ.

Equivalently,

τ :=
(
τ

(n)
1 − τ (n′)

1

)
=
(
τ

(n)
2 − τ (n′)

2

)
+ θδ,

with |θ| < 1. By the triangle inequality, this implies that τ lies in

E(ε, f1), and is closer than δ to an element of E(ε, f2), namely (τ
(n)
2 −

τ
(n′)
2 ). In other words, τ ∈ P .

We will now show that P is relatively dense. Consider an arbitrary

interval I of length (2n0 + 3)L and find the integer n for which τ
(n)
1 is

closest to the center of I. Then the distance of τ
(n)
1 from the center of

I is at most L. Find the corresponding n′ and τ , and conclude that

|τ − τ (n)
1 | = |τ (n′)

1 | ≤ n0L.

This means that τ lies in I, and so the set P intersects every interval
of length (2n0 + 3)L. �

Corollary 6.28. Let f1 and f2 be both uniformly almost periodic
and uniformly continuous. Then f1 + f2 is also uniformly almost peri-
odic.

Proof: Fix ε > 0, and apply Lemma 6.26 to f = f2, ε1 = ε
3

and

ε2 = 2ε
3

. We obtain δ > 0 such that {τ : dist (τ, E( ε
3
, f2) < δ} ⊆

E(2ε
3
, f2). Now apply Lemma 6.27 to conclude that

{τ ∈ E( ε
3
, f1) : dist (τ, E( ε

3
, f2)) < δ}

is relatively dense. But, by the triangle inequality, any τ in the above
set is an ε-translation number for f1 + f2. �
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Proof: (of Theorem 6.25) Since a finite Dirichlet series is uniformly
continuous, it follows inductively from Corollary 6.28 that it is also
uniformly almost periodic. Therefore it is sufficient to prove that the
uniform limit of uniformly almost periodic functions is also uniformly
almost periodic.

Fix ε > 0. Find N so that ‖fn − f‖∞ < ε/3 holds for all n ≥ N .
Then any ε/3-translation number τ of fN is an ε-translation number
of f , since

|f(z + τ)− f(z)| ≤ |f(z + τ)− fN(z + τ)|+ |fN(z + τ)− fN(z)|+ |fN(z)− f(z)|
< ε ∀ z. �

6.6. The spaces H2
w

Definition 6.29. Let w = {wn}∞n=1 be a sequence of positive real
numbers which are in this context called a weight . Define the Hilbert
space H2

w of Dirichlet series by

H2
w :=

{∑
n

ann
−s :

∑
n

|an|2wn <∞
}
.

Remark 6.30. Note that if f ∈ H2
w, then f ′ is in the space with

weights wn(log n)2.

One way to obtain interesting weights is from measures on the pos-
itive real axis. Let µ be a positive Radon measure on [0,∞) such that

0 ∈ supp µ (6.31)∫∞
0

4−σ dµ(σ) <∞. (6.32)

We define the weight sequence by

wn :=

∫ ∞
0

n−2σ dµ(σ). (6.33)

One example of course is when µ is the Dirac measure at 0 denoted
by δ0, and all the weights are 1, giving H2. Here is another class.

Example 6.33. For each α < 0, define µα on [0,∞) by

dµα(σ) =
2−α

Γ(−α)
σ−1−αdσ.

Then for each n ≥ 2, we have from (6.33)

wn = (log n)α. (6.34)

Since w1 is infinite, it is convenient to assume that sums
∑

n ann
−s

start at n = 2 when dealing with these spaces.
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Remark 6.35. On the unit disk, one can define spaces H2
w by

H2
w :=

{∑
n

anz
n :

∑
n

|an|2wn <∞
}
. (6.36)

A special case is when
wn = (n+ 1)α.

Then α = 0 corresponds to the Hardy space, α = −1 to the Bergman
space, and α = 1 to the Dirichlet space, the space of functions whose
derivatives are in the Bergman space. The theory of the Hardy space
on the disk is fairly well-developed – see e.g. [Koo80, Dur70] for a
first course, or [Nik85] for a second. The Bergman space (and the
other spaces with α < 0 in this scale, that all come from L2-norms
of radial measures) is more complicated — see e.g. [DS04, HKZ00].
The Dirichlet space on the disk is even more complicated analytically,
though it does have the complete Pick property. See e.g. [EFKMR14].

This section should be seen as an attempt to continue the analogy
of Remark 6.35. The case α = 0 in (6.34) we think of as a Hardy-type
space, and the case α = −1 in (6.34) we think of as a Bergman-type
space. When α > 0, we can still define weights by (6.34), though they
do not come from a measure as in (6.33). By Remark 6.30, we can think
of α = 1, for example, as the space of functions whose first derivatives
lie in the space with α = −1. This would render this space a “Dirichlet
space” of Dirichlet series, which is perhaps a surfeit of Dirichlet.

If the weights are defined by (6.33), then, for every ε > 0,

wn ≥
∫ ε

0

n−2σ dµ

≥ µ([0, ε])n−2ε, (6.37)

and, consequently, the weight sequence cannot decrease to 0 very fast.

Proposition 6.38. Suppose wn is a weight sequence that is bounded
below by n−2ε for every ε > 0. Then for any f ∈ H2

w, we have σa(f) ≤
1
2
.

Proof: Take σ > 1
2
, and choose ε > 0 such that σ − ε > 1

2
. Then,

by the Cauchy-Schwarz inequality,∑
n

|an|n−σ =
∑
n

|ann−ε|n−(σ−ε)

≤

(∑
n

|an|2n−2ε

) 1
2 (∑

n−2(σ−ε)
) 1

2
.
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The first term is finite by (6.37), and the second since 2(σ− ε) > 1. �

The following theorem, in the case that µ = δ0, is due to F. Carlson
[Car22]. If w1 < ∞, we assume that the Dirichlet series for f starts
at n = 1; if w1 is infinite, we start the series at n = 2 (Condition (6.32)
says that w2 <∞).

Theorem 6.39. Let µ satisfy (6.31) and (6.32), and define wn by
(6.33). Assume that f =

∑
n ann

−s has σb(f) ≤ 0. Then∑
n

|an|2wn = lim
c→0+

lim
T→∞

1

2T

∫ T

−T

∫ ∞
0

|f(s+ c)|2 dµ(σ) dt. (6.40)

Moreover, if µ({0}) = 0, then the right-hand side becomes

lim
T→∞

1

2T

∫ T

−T

∫ ∞
0

|f(s)|2 dµ(σ) dt.

Proof: Fix 0 < c < 1, and let 0 < ε < 1. Define δ by

δ =
ε

(1 + µ[0, 1
c
])(1 + 2‖f‖Ωc)

.

Since the Dirichlet series of f converges uniformly in Ωc, there exists
N such that

|
∑
n≤N ′

ann
−s − f(s)| < δ, ∀ s ∈ Ωc, ∀ N ′ > N.

Then

lim
T→∞

1

2T

∫ T

−T

∫ 1/c

0

|f(s+ c)|2 dµ(σ) dt = lim
T→∞

1

2T

∫ T

−T

∫ 1/c

0

|
∑
n≤N ′

ann
−s−c|2 dµ(σ) dt+O(ε)

=
∑
n≤N ′

|an|2
∫ 1/c

0

n−2σ−2c dµ(σ) +O(ε)

Let N ′ tend to infinity, and c tend to 0, to get that the difference
between the left and right sides of (6.40) are at most ε; since this is
arbitrary, the two sides must be equal.

As limT→∞ −
∫ T
−T |f(s + c)|2dt is monotonically increasing as c →

0+, the monotone convergence theorem proves the second part of the
theorem. �

In particular, if dµ = dµ−1 = 2dm, we obtain∑
n

|an|2
1

log n
= 2 lim

T→∞
−
∫ T

−T

∫ ∞
0

|f(s)|2 dm(σ) dt,
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and for µ = δ0, we get∑
n

|an|2 = lim
c→0+

lim
T→∞

−
∫ T

−T
|f(c+ it)|2 dt.

6.7. Multiplier algebras of H2 and H2
w

Notation 6.41. Let us denote by D the set of functions expressible
as Dirichlet series which converge somewhere, that is,

D :=
{
f : ∃ρ such that f(s) =

∞∑
n=1

ann
−s in Ωρ

}
.

Since σa ≤ σc + 1, D is also the set of Dirichlet series that converge
absolutely in some half-plane.

The following theorem is due to H. Hedenmalm, P. Lindqvist and
K. Seip, in their ground-breaking paper [HLS97].

Theorem 6.42. Let µ and {wn} satisfy (6.31) – (6.33). Then
Mult (H2

w) is isometrically isomorphic to H∞(Ω0) ∩ D.

Remark 6.43. Before we prove the theorem, note that it implies
that the multiplier algebra is independent of the weight w. The sit-
uation is analogous to a similar phenomenon on the disk. For any
sequence w = {wn}∞n=0, one can define a Hilbert space of holomorphic
functions H2

w by (6.36). If the sequence w comes from a radial positive
Radon measure µ on D such that T ⊂ supp µ as

wn =

∫
D
|z|2n dµ(z),

then {wn}n is non-increasing and, since the measure is radial, the se-
quence {zn}n∈N is an orthogonal basis of H2

w. (Saying the measure is
radial means dµ = dθdν(r) for some measure ν on [0, 1]). Thus, the
norm on H2

w is given by integration:

‖f‖2 =

∫
D
|f(z)|2 dµ(z).

For all these spaces,

Mult (H2
w) = H∞(D), (6.44)

the bounded analytic functions on the disk. Indeed, if µ is carried by
the open disk, this follows from Proposition 11.9. If µ puts weight on



70 6. HILBERT SPACES OF DIRICHLET SERIES

the circle, the theorem is still true, and can most easily be seen by
writing ∫

D
|f(z)|2 dµ(z) = lim

r↗1

∫
D
|f(rz)|2 dµ(z).

In particular, (6.44) holds for all the spaces with wn = (n + 1)α for
α ≤ 0.

Remark 6.45. There exist many functions in H∞(Ω0) \ D, for

example f(s) =
(

3
2

)−s
and g(s) = s

(s+1)2
.

Before embarking on the proof of the theorem, recall the following
fact. It is a version of the Phragmén-Lindelöf principle — a maximum
modulus principle for unbounded domains. This particular version is
known as the three line lemma.

Lemma 6.46. Let f be a bounded holomorphic function in {z ∈
C; a < Re z < b}, let N(σ) := supt∈R |f(σ + it)|. Then the function
N is logarithmically convex, that is,

N(σ) ≤ N(a)
b−σ
b−aN(b)

σ−a
b−a .

Proof: See Theorem 12.8, p. 274 in [Rud86]. �

Remark 6.47. The lemma does not hold without the assumption
that f is bounded in the strip. Indeed, consider the function f(z) =

ee
iz

. It is holomorphic in the strip {−π
2
< Re z < π

2
}, bounded on

its boundary {|Re z| = π
2
}, but limt→−∞ f(it) = ∞. However, one

can weaken the assumption of boundedness of f to an appropriate
restriction on the growth of f .

The following lemma is trivial if 1 ∈ H2
w.

Lemma 6.48. Any multiplier of H2
w lies in D.

Proof: If ϕ belongs to Mult (H2
w), then both ϕ(s)2−s and ϕ(s)3−s

are in D. So

ϕ(s)2−s =
∑

ann
−s

ϕ(s)3−s =
∑

bnn
−s.

Multiplying the first equation by 3−s and the second by 2−s, we con-
clude that an is zero when n is odd (and bn is zero when n is not
divisible by 3), so ϕ itself can be represented by an ordinary Dirichlet
series. �

Proposition 6.49. Let ϕ(s) =
∑∞

n=1 bnn
−s with σb ≤ 0. Then

‖Mϕ‖ = ‖ϕ‖Ω0.
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Proof: Let f(s) =
∑

n≤N ann
−s, then σb(ϕf) ≤ 0. By Theorem

6.39,

‖ϕf‖2
H2
w

= lim
c→0+

lim
T→∞

−
∫ T

−T

∫ ∞
0

|ϕ(s+ c)|2|f(s+ c)|2 dµ(σ) dt

≤ ‖ϕ‖2
Ω0
· ‖f‖2

H2
w
.

Hence Mϕ is bounded on a dense subset of H2
w, and therefore extends

to a bounded operator on all of H2
w, which must be multiplication by

φ. (Why?) Also, the estimate above shows that ‖Mϕ‖ ≤ ‖ϕ‖Ω0 .
Conversely, assume that ‖Mϕ‖ = 1 and 1 < ‖ϕ‖Ω0 (possibly infi-

nite). Let

N(σ) := sup
t∈R
|ϕ(σ + it)|.

Clearly, N(σ)→ |b1| as σ →∞, and for any σ > 0, we have

N2(σ) ≥ lim
T→∞

−
∫ T

−T
|ϕ(σ + it)|2 dt =

∞∑
n=1

|bn|2n−2σ > |b1|2,

unless ϕ is a constant (in which case the Proposition is obvious). For
any 0 < a < b one can apply the three line lemma, 6.46, to conclude
that logN is convex, so it must be convex on the half-line (0,∞). Since

lim
σ→∞

logN(σ) = log |b1| <∞,

we must have that logN , and hence N , is a decreasing function on
(0,∞).

For each c > 0,
∑

n bnn
−s converges uniformly in Ωc, and hence by

Theorem 6.25, ϕ is uniformly continuous and uniformly almost periodic
in this half-plane. Thus, there exist ε1, ε2, ε3 and ε4 positive such that∣∣{t : |ϕ(σ + it)| ≥ 1 + ε1, −T < t < T}

∣∣ ≥ ε2(2T ) (6.50)

holds for every sufficiently large T > 0, and σ ∈ (ε3, ε3 + ε4). Indeed,
choose ε3 so that N(ε3) > 1. Then there is some ε1 > 0 and some
rectangle R with non-empty interior,

R = {σ + it : ε3 ≤ σ ≤ ε3 + ε4, t1 ≤ t ≤ t1 + h},

such that |ϕ| > 1 + 2ε1 on R. By the definition of uniform almost
periodicity, there exists some L such that every interval of length L
contains an ε1 translation number of ϕ. For T > L, every interval of
length 2T contains at least T

L
disjoint sub-intervals of length L, so for

any σ ∈ [ε3, ε3 + ε4] the left-hand side of (6.50) is at least T
L
h. Setting

ε2 = h
2L

yields the inequality (6.50).
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Now, on one hand, we have

‖M j
ϕ2−s‖H2

w
≤ ‖Mϕ‖j · ‖2−s‖H2

w
= ‖2−s‖H2

w
,

so that this sequence of norms is bounded by
√
w2. On the other hand,

‖M j
ϕ2−s‖2

H2
w
≥ lim

T→∞

∫ ε4

0

−
∫ T

−T
|2−(s+ε3)ϕj(s+ ε3)|2 dt dµ(σ)

≥ µ([0, ε4])2−2(ε3+ε4)ε2(1 + ε1)2j,

and this tends to infinity as j tends to ∞, a contradiction. �

For later use, note that the proof of Proposition 6.49 shows:

Lemma 6.51. If ϕ =
∑∞

n=1 bnn
−s satisfies σb(ϕ) ≤ 0, and ‖ϕ‖Ω0 >

1, then
sup
j∈N+

‖M j
ϕ2−s‖ = ∞.

For K ∈ N+, define

NK = {n = pr11 · . . . · p
rK
K ; rj ∈ N},

where, as usual, pl is the l-th prime. Clearly, n ∈ NK , if and only if
pl 6
∣∣n for all l > K. Let QK : D → D be the map defined by

QK

( ∞∑
n=1

ann
−s
)

=
∑
n∈NK

ann
−s.

The map QK is well-defined, since if
∑∞

n=1 ann
−s converges absolutely

in Ωρ, then so does
∑

n∈NK ann
−s.

We need the following observations.

Lemma 6.52. For any K ∈ N+, the map QK has the following
properties:

(1) The restriction of QK to H2
w is the orthogonal projection onto

span {n−s : n ∈ NK}.
(2) For any ϕ, f ∈ D, QK(ϕf) = (QKϕ)(QKf).
(3) If ϕ ∈ Mult (H2

w), then QKMϕQK = MQKϕQK = QKMϕ.

Proof: (1) follows immediately from the orthogonality of the func-
tions {n−s}n∈N+ .

(2) By linearity, we only need to check that QK(n−sm−s) =
QK(n−s)QK(m−s), for all m,n ∈ N+. This follows from the facts that
if p is prime, then p 6

∣∣nm if and only if p 6
∣∣n and p 6

∣∣m, and

QKn
−s =

{
n−s, pl 6

∣∣n, for all l > K,

0, otherwise.
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(3) Let f ∈ H2
w, then, using (2), we get

QKMϕQKf = QK(ϕQKf)

= (QKϕ)(Q2
Kf)

= QK(ϕf).

Also,

MQKϕQKf = (QKϕ)(QKf)

= QK(ϕf). �

Proposition 6.53. Mult (H2
w) ⊂ H∞(Ω0) ∩ D.

Proof: Let f =
∑
ann

−s ∈ H2
w, and fix K ∈ N+, s ∈ Ω0. Then

|QKf(s)| =

∣∣∣∣∣∑
n∈NK

ann
−s

∣∣∣∣∣
≤

[∑
n∈NK

n−σ

]
sup
n∈NK

|an|

=

[
K∏
j=1

1

1− p−σj

]
sup
n∈NK

|an|.

So, if supn∈NK |an| is finite, then QK(f) is bounded in Ωρ for all ρ > 0.
Since

∑
n |an|2ωn converges, {|an|2ωn} is bounded, and hence by (6.37),

|an| = O(nε) for all ε > 0. Thus, for any ε > 0, the Dirichlet series
of fε(s) := f(s + ε) has bounded coefficients. Consequently, QKfε ∈
H∞(Ωρ), which is the same as saying QKfε+ρ ∈ H∞(Ω0). Since ε > 0
and ρ > 0 were arbitrary, we conclude that

QKfε ∈ H∞(Ω0), ∀ K ∈ N+, ε > 0, f ∈ H2
w.

Let ϕ be in Mult (H2
w). Then ϕ2−s ∈ H2

w, and so 2−sQK(ϕ) =
QK(ϕ2−s) ∈ H∞(Ωε), for all ε > 0. Since we know ϕ ∈ D by
Lemma 6.48 it follows that σb(QKϕ) ≤ 0.

By Lemma 6.51, applied to QKϕ, we get

‖QKϕ‖Ω0 ≤ ‖MQKϕ|QKH2
w
‖. (6.54)

By Lemma 6.52,

‖MQKϕ|QKH2
w
‖ = ‖QKMϕQK‖
≤ ‖Mϕ‖.

So by (6.54),

‖QKϕ‖Ω0 ≤ ‖Mϕ‖ ∀ K ∈ N+.



74 6. HILBERT SPACES OF DIRICHLET SERIES

Using normal families, we conclude that some subsequence QKlϕ con-
verges to some function ψ ∈ H∞(Ω0) uniformly on compact subsets of
Ω0. But QKϕ→ ϕ uniformly on compact subsets of Ωσu(ϕ) and hence,
ϕ = ψ in Ωσu(ϕ). By uniqueness of analytic functions, we conclude that
ϕ = ψ in Ω0. �

Combining Propositions 6.49 and 6.53, we complete the proof of
Theorem 6.42. This also concludes the solution to Beurling’s problem
[HLS97].

Corollary 6.55. (Hedenmalm, Lindqvist, Seip) Let ψ(x) =√
2
∑∞

n=1 cn sin(nπx) be an odd, 2-periodic function on R. Then
{ψ(nx)}n∈N+ forms a Riesz basis for L2([0, 1]) if and only if the func-
tion ϕ(s) =

∑∞
n=1 cnn

−s is bounded and bounded from below in Ω0.

6.8. Cyclic Vectors

Consider the following variant of Beurling’s question. Let ψ :
[0; 1] → C be in L2. When is the set {ψ(nx) : n ∈ N+} complete,
i.e., when do we have

span {ψ(nx) : n ∈ N+} = L2([0; 1])?

As before, we can write ψ(x) =
∑∞

n=1 cnβ(x), and translate this prob-
lem to H2. Let f(s) =

∑∞
n=1 cnn

−s. When is

span {f(ns) : n ∈ N+} = H2?

Since f(ns) = (Mn−sf)(s), it is equivalent to requiring that

span {f · D} = H2,

i.e. that f is a cyclic vector for the collection of multipliers {Mp−s :
p ∈ P}. An obvious necessary condition is that f does not vanish in
Ω1/2. We record this open question.

Question 6.56. Which Dirichlet series f satisfy span {f ·D} = H2?

6.9. Exercises

Exercise 6.57. Show that H2 contains a function f with σa(f) =
1
2
.

Exercise 6.58. Prove that the reproducing kernel for H2
w is given

by

k(s, u) =
∑
n

1

wn
n−s−ū. (6.59)

Exercise 6.60. Prove (6.34).
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Exercise 6.61. Show that if α ∈ Z, and wn = (log n)α, the re-
producing kernel for H2

w can be written in terms of the ζ function (if
α = 0), its derivatives (if α < 0) or integrals (if α > 0), after adjusting
if necessary for the constant term.

Exercise 6.62. Prove that
∑
ann

−s is in D if and only if an is
bounded by a polynomial in n.

6.10. Notes

The proof we give of Besicovitch’s theorem 6.25 is from his book
[Bes32, p. 144]. In the book he also develops the theory of functions
that are almost periodic in the Lp-sense (where the Lp-norm of the
difference between f and a vertical translate of it is less than ε).

The solution to Beurling’s problem, and the proof of Theorem 6.42
(in the most important case,H2

w = H2) is due to Hedenmalm, Lindqvist
and Seip [HLS97]. The spaces H2

w were first studied in [McCa04].
In Carlson’s theorem 6.39, if µ has a point mass at 0, then one

cannot take the limit with respect to c inside the integral in (6.40).
Indeed, E. Saksman and K. Seip prove the following theorem in [SS09]:

Theorem 6.63. (1) There exists a function f in H∞(Ω0)∩D such

that limT→∞
1

2T

∫ T
−T |f(it)|2 dt does not exist.

(2) For all ε > 0, there exists g =
∑∞

n=1 ann
−s ∈ H∞(Ω0) ∩ D that

is a singular inner function and such that
∑
|an|2 < ε.

For a more refined version of Carlson’s theorem, see [QQ13, Section
7.4].





CHAPTER 7

Characters

7.1. Vertical Limits

Let us return to the map Q : D → Hol (D∞). Consider the group
(Q+, ·) equipped with discrete topology. Its dual group K — the group
of all characters,

K = {χ : Q+ → T; χ(mn) = χ(m)χ(n), for all m,n ∈ Q+}
is isomorphic (as a topological group) to T∞ via the map χ 7→
{χ(pk)}k∈N+ = (χ(2), χ(3), χ(5), . . . ). The topology on K is the topol-
ogy of pointwise convergence. It corresponds to the product topology
on T∞. The group T∞ is also equipped with a Haar measure, which
is the infinite product of the Haar measures on T. We shall use ρ to
denote Haar measure on T∞.

Given any set X, a flow on X is family of maps Tt : X → X, where
t is a real parameter, that satisfy T0 is the identity, and Ts◦Tt = Ts+t. If
X is equipped with some structure (measure space, topological space,
smooth manifold, ...), we usually assume that Tt is compatible with
this structure (i.e. each Tt is measurable, continuous, smooth, ...).

Given a sequence of real number {αn}n∈N, we define a flow on T∞
by

Tt(z1, z2, . . . ) := (e−itα1z1, e
−itα2z2, . . . ),

the so-called Kronecker flow . Note that the Kronecker flow is contin-
uous and measurable.

Definition 7.1. A measurable flow on a probability space is er-
godic, if all invariant sets have measure 0 or 1.

Theorem 7.2. The Kronecker flow is ergodic if and only if {αn}
are linearly independent over Q.

Proof: See [CFS82]. �

In particular, if αn = log pn, the Kronecker flow is ergodic. (See
Theorem 6.14.) The ergodic theorem (of which there are many vari-
ants) says that for an ergodic flow, the time average (the left-hand side
of (7.4)) equals the space average (the right-hand side).

77
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Theorem 7.3. (Birkhoff-Khinchin) Let Tt be an ergodic flow on
K. Then

lim
T→∞

1

2T

∫ T

−T
g(Ttχ0) dt =

∫
K

g(χ)dρ(χ), (7.4)

for all χ0, if g ∈ C(K), and for a.e. χ0, if g ∈ L1.

Proof: See [CFS82]. �

Lemma 7.5. Let f ∼
∑∞

n=1 ann
−s safisfies σu(f) < 0. Then Qf ∈

C(T∞).

Proof: It suffices to show that the series forQf is uniformly Cauchy,
since the partial sums are clearly continuous.

Let L = supn |an| < ∞. Fix 0 < ε < 1, and find N ∈ N such that
for all M2 > M1 > N ∣∣∣∣ M2∑

n=M1

ann
it

∣∣∣∣ < ε.

Thus, for all t ∈ R,∣∣∣∣ M2∑
n=M1

an
[
eit log p1

]r1(n)
. . .
[
eit log pk

]rk(n)

∣∣∣∣ < ε.

Note that, if w1, . . . , wk, ζ1, . . . , ζk ∈ T, then

|w1 . . . wk − ζ1 . . . ζk| ≤ |w1 − ζ1|+ · · ·+ |wk − ζk|. (7.5)

This can be proven by induction on k using the inequality |w1w2 −
ζ1ζ2| ≤ |w1 − ζ1| + |w2 − ζ2|, which follows easily from the triangle
inequality.

Fix z ∈ T∞ and M2 > M1 > N as above. By Kronecker’s theorem
6.14, we can find t ∈ R such that |eit log pj − zj| < ε

M2L
holds for all j’s

such that pj ≤M2. Thus we have,∣∣∣∣ M2∑
n=M1

anz
r(n)

∣∣∣∣ ≤
∣∣∣∣ M2∑
n=M1

an

[
zr(n) −

[
eit log p1

]r1(n)
. . .
[
eit log pk

]rk(n)
]∣∣∣∣

+

∣∣∣∣ M2∑
n=M1

an
[
eit log p1

]r1(n)
. . .
[
eit log pk

]rk(n)

∣∣∣∣
< ε+ ε = 2ε,

where we used the inequality (7.5) to estimate the first term. �

This gives another proof of Carlson’s theorem, 6.39.
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Theorem 7.6. Let f ∼
∑∞

n=1 ann
−s ∈ H2, and let x > 1

2
. Then

lim
T→∞

1

2T

∫ T

−T
|f(x+ it)|2 ds =

∞∑
n=1

|an|2n−2x. (7.7)

Proof: Since σu(f) ≤ σa(f) ≤ 1
2
, we obtain σu(fx) < 0, for x > 1

2
.

Since Qfx is continuous on T∞ by Lemma 7.5, we can apply the
Birkhoff-Khinchin ergodic theorem 7.3 for any character χ0 ∈ K to get

lim
T→∞

1

2T

∫ T

−T
|Qfx(Ttχ0)|2 dt =

∫
K

|Qfx(χ)|2 dρ(χ)

=
∑
q∈Q+

|Q̂fx(q)|2 (7.8)

=
∞∑
n=1

|an|2n−2x. (7.9)

We used Plancherel’s theorem to obtain (7.8), and the fact that Qf is
a sum only over positive powers of z means the only non-zero terms
in (7.8) are when q ∈ N+, giving (7.8). Choosing the trivial character
χ0(n) ≡ 1 yields

(Qfx)(Ttχ0) =
∑
n

ann
−xn−itχ0(n)

= f(x+ it),

giving (7.7). �

For every τ ∈ R, the map f 7→ fiτ is unitary on H2. Thus, by
Corollary 11.8, for every sequence {τk}k∈N ⊂ R, there is a subsequence
τkl such that {fiτkl} converges uniformly on compact subsets of Ω1/2.

Definition 7.10. Let f ∈ H2, and let {τk}k∈N be a sequence of real
numbers. If the sequence fiτk converges uniformly on compact subsets
of Ω1/2 to a function g, then g is called a vertical limit function of f .

Proposition 7.11. Let f ∈ H2, and let χ be a character. Then
fχ(s) :=

∑∞
n=1 anχ(n)n−s is a vertical limit function of f . Conversely,

all vertical limit functions have this form for some character χ.

Proof: Fix a character χ and let k ∈ N+. By Kronecker’s theorem,
we can find τk ∈ R such that |eiτk log pj − χ(pj)| ≤ 1/k holds for j =
1, . . . , k. Define fk := fiτk . Then using inequality (7.5), we conclude

that for any n ∈ N+, n = p
r1(n)
1 . . . p

rl(n)
l ,∣∣f̂k(n)− f̂χ(n)

∣∣ =
∣∣f̂(n)niτk − f̂(n)χ(n)

∣∣
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=
∣∣f̂(n)

∣∣·∣∣∣∣ l∏
j=1

[
ei log pjτk

]rj − l∏
j=1

χ(pj)
rj

∣∣∣∣
≤ ‖f‖H2

l∑
j=1

rj
∣∣ei log pjτk − χ(pj)

∣∣
≤ 1

k
‖f‖H2

l∑
j=1

rj,

and this last expression tends to 0 as k → ∞. Proposition 11.7 now
implies that fχ is a vertical limit function of f .

Conversely, let g be a vertical limit function of f . Using Proposition
11.7 again, we conclude that there exists a sequence {τk}k∈N ⊂ R such

that f̂iτk(n)→ ĝ(n) for all n ∈ N. Equivalently,

niτk → ĝ(n)

f̂(n)
, as k →∞.

Since n 7→ niτk is a character for all k ∈ N, so is the limit: n 7→
ĝ(n)/f̂(n). �

Let us now turn to the Lindelöf hypothesis, a conjecture weaker
than the Riemann hypothesis, but one that could be possibly ap-
proached by the tools of functional analysis.

Recall that the alternating zeta function is given by ζ̃(s) =∑∞
n=1(−1)nn−s. We have seen that ζ̃(s) = (21−s − 1)ζ(s). This im-

plies that ζ̃(s) and ζ(s) are of comparable size in {s ∈ C : Re s >
0, |1− Re s| > ε}, for any ε > 0.

Conjecture 7.12. (Lindelöf hypothesis) For every σ > 1
2

and
k ∈ N+

lim
T→∞

1

2T

∫ T

−T
|ζ̃k(σ + it)|2 dt <∞

holds.

Recall that dk(n), defined in Corollary 1.17, is the number of ways
n can be factored into exactly k factors, allowing 1 and where the order
matters.

Lemma 7.13. Let k be a natural number and let ε > 0. Then

dk(n) = O(nε) as n→∞.
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Proof: Note that d2(n) is the number of divisors of n. Also, d3(n) ≤
d2(n)2, since

d3(n) =
∑
l|n

d2

(
n

l

)
≤
∑
l|n

d2(n) = d2(n)2.

Applying this argument inductively, we obtain dk(n) ≤ d2(n)k−1 and
thus it is enough to show that d2(n) = O(nε) for all ε > 0.

Fix ε > 0. We need to show that there exist C = C(ε) such that
d2(n) ≤ Cnε holds for all n ∈ N+, or equivalently, that

log d2(n) ≤ ε log n+ logC.

Write n =
∏l

j=1 p
tj
j with tj ≥ 0 and tl > 0, then d2(n) =

∏l
j=1(1 + tj).

We want to show that

l∑
j=1

[log(1 + tj)− εtj log pj] ≤ logC

for all n ∈ N. Clearly, if log pj ≥ 1/ε, then the jth summand is non-
positive, because log(1 + tj) < tj. As tj →∞, the jth summand tends
to −∞. Hence each of the finitely many summands with log pj < 1/ε
is bounded. �

Suppose that the Carlson theorem applied to ζ̃k(s). Then

lim
T→∞

1

2T

∫ T

−T
|ζ̃k(σ + it)|2 dt =

∞∑
n=1

n−2σ| ̂̃ζk(n)|2

≤
∞∑
n=1

n−2σ|ζ̂k(n)|2

< ∞,

since ζ̂k(n) = dk(n) = O(nε) for all ε > 0 by Lemma 7.13. Thus we
would have proved the Lindelöf hypothesis. Conversely, the following
is known.

Theorem 7.14. (Titchmarsh) If

lim
T→∞

1

2T

∫ T

−T
|ζ̃k(σ + it)|2 dt <∞,

then it equals to
∑∞

n=1 n
−2σ| ̂̃ζk(n)|2.
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7.2. Helson’s Theorem

We will need some properties of Hardy spaces of the right half-plane
Ω0. There is more than one natural definition. We will consider two
of them. Let ψ : Ω0 → D be the standard conformal mapping of the
right half-plane onto the disk, that is, ψ(z) = 1−z

1+z
. For 1 ≤ p ≤ ∞, we

define the conformally invariant Hardy space as

Hp
i (Ω0) = {g ◦ ψ; g ∈ Hp(D)}.

For 1 ≤ p < ∞, writing eiθ = ψ(−it) = 1+it
1−it , and changing variables

yields

‖g‖pHp(D) =

∫
T
|g(eiθ)|p dθ

2π

=

∫
R
|(g ◦ ψ)(−it)|p

∣∣∣∣dθdt
∣∣∣∣ dt2π

=

∫
R
|(g ◦ ψ)(−it)|p dt

π(1 + t2)
.

Any function g ∈ Hp(D) extends to an Lp function on T satisfying∫
T
g(eiθ)einθ

dθ

2π
= 0, for all n ∈ N+. (7.10)

Conversely, any Lp function on T satisfying (7.10) is the boundary
value of function in Hp(D).

Let µ be the measure on the real axis give by dµ(t) = dt
π(1+t2)

.

We deduce that a Lebesgue measurable function f : iR→ C belongs
to Hp

i (Ω0), if and only if

‖f‖p
Hp
i (Ω0)

:=

∫
R
|f(it)|p dµ(t) < ∞,

and ∫
R
f(it)

(
1− it
1 + it

)n
dµ(t) = 0, for all n ∈ N+. (7.11)

Here is the second definition for the Hardy spaces of the half-plane.
For 1 ≤ p <∞, set

Hp(Ω0) :=
{
f ∈ Hol (Ω0)

∣∣ ‖f‖pHp(Ω0) := sup
σ>0

∫ ∞
−∞
|f(σ+ it)|p dt <∞

}
.

For any function f ∈ Hp(Ω0) and almost every t ∈ R, the limit f̃(it) :=

limσ→0+ f(σ + it) exists and satisfies f̃ ∈ Lp(iR). One can recover f

from f̃ by convolution with the Poisson kernel. For both Hp
i (Ω0) and

Hp(Ω0) we identify the functions with their boundary values.
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By the Paley-Wiener theorem,

H2(Ω0) = {f ∈ L2(iR); (Ff)(iξ) = 0,∀ξ < 0}.

The different integrability conditions in Hp
i (Ω0) and Hp(Ω0) yield

f ∈ H2
i (Ω0) ⇐⇒ f(z)

1 + z
∈ H2(Ω0).

When p = ∞, we will define H∞(Ω0) = H∞i (Ω0) to be the bounded
analytic functions in Ω0. For more information on Hp spaces of the
half-plane see Chapters 10 and 11 of [Dur70].

Theorem 7.15. (Helson) Let f(s) ∼
∑∞

n=1 ann
−s ∈ H2. For a.e.

character χ ∈ K, the function fχ(s) =
∑∞

n=1 anχ(n)n−s defined on
Ω1/2 extends to an element of H2

i (Ω0), and satisfies

lim
T→∞

1

2T

∫ T

−T
|fχ(it)|2 dt =

∞∑
n=1

|an|2 < ∞. (7.16)

Before we prove the theorem, let us start with a preliminary obser-
vation. The set {eq}q∈Q+ forms an orthonormal basis of L2(K), where

eq(χ) = χ(q), for all χ ∈ K.

Include reference here.
Proof: By Tonelli’s theorem, we have,∫

K

∫ ∞
−∞
|fχ(it)|2dµ(t)dρ(χ)

=

∫ ∞
−∞

∫
K

|fχ(it)|2dρ(χ)dµ(t)

=

∫ ∞
−∞

∫
K

∑
m,n

anamχ(n)χ(m)
( n
m

)−it
dρ(χ)dµ(t)

=

∫ ∞
−∞

∑
n

|an|2dµ(t)

=
∑
n

|an|2

= ‖f‖2
H2 .

We conclude that for a.e. χ ∈ K, the function fχ belongs to L2(iR, dµ).
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Fix k ∈ N+. By the Cauchy-Schwarz inequality and Tonelli’s theo-
rem, we obtain∫

K

∣∣∣∣∣
∫
R
fχ(it)

(
1− it
1 + it

)k
dµ(t)

∣∣∣∣∣
2

dρ(χ)

≤
∫
K

(∫
R
|fχ(it)|2dµ(t)

)(∫
R

∣∣∣∣1− it1 + it

∣∣∣∣2n dµ(t)

)
dρ(χ)

=

∫
R

∫
K

|fχ(it)|2dρ(χ)dµ(t)

=

∫
R

∫
K

∑
m,n

anamχ(n)χ(m)
( n
m

)−it
dρ(χ)dµ(t)

=

∫
R

∑
n

|an|2dµ(t)

=
∑
n

|an|2 < ∞.

Thus, the function G(χ) :=
∫
R fχ(it)(1−it

1+it
)kdµ(t) belongs to L2(K) ⊂

L1(K). To show G(χ) = 0 for a.e. χ, we only need to show that all its
Fourier coefficients vanish, i.e,∫

K

G(χ)χ(q) dρ(χ) = 0, for all q ∈ Q+.

Let us set aq = 0 for all q ∈ Q+ \ N+. Since G ∈ L1(K), we can apply
Fubini’s theorem:∫
K

G(χ)χ(q) dρ(χ) =

∫
K

χ(q)

∫
R

(
1− it
1 + it

)k
fχ(it)dµ(t)dρ(χ)

=

∫
R

(
1− it
1 + it

)k ∫
K

χ(q)
∑
n

ann
−itχ(n)dρ(χ)dµ(t)

=

∫
R

(
1− it
1 + it

)k
aqq
−itdµ(t).

If q ∈ Q+ \ N+, then the last term vanishes, since aq does. If q ∈ N+,
then q−it ∈ H∞(Ω0) = H∞i (Ω0) and thus has the form g ◦ ψ for some
g ∈ H∞(D) ⊂ H2(D). Hence, by (7.11) the last term above also
vanishes. Consequently, G(χ) = 0 a.e., and so for a.e. χ ∈ K, fχ
belongs to H2

i (Ω0).
To prove (7.16), note that, by Plancherel’s theorem, the function

Qf : K → C defined by (Qf)(χ) =
∑∞

n=1 anχ(n) =
∑∞

n=1 anen(χ)
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belongs to L2(K). Also note that

fχ(it) =
∑
n

anχ(n)n−it

=
∑
n

an(Ttχ)(n)

= (Qf)(Ttχ),

where Tt is the Kronecker flow on K. We apply the Birkhoff-Khinchin
erdodic theorem 7.3 to the ergodic flow {Tt} and the function |Qf |2 ∈
L1(K) to conclude that

lim
T→∞

1

2T

∫ T

−T
|fχ0(it)|2 dt = lim

T→∞

1

2T

∫ T

−T
|(Qf)(Ttχ0)|2 dt

=

∫
K

|(Qf)(χ)|2 dρ(χ)

=
∞∑
n=1

|an|2,

holds for a.e. χ0 ∈ K. �

Remark 7.17. Recall that by Lemma 7.13, ζk1/2+ε and, conse-

quently, ζ̃k1/2+ε belong to H2 for every k ∈ N+ and ε > 0. Thus,
by Theorem 7.15, for a.e. χ ∈ K

lim
T→∞

−
∫ T

−T

∣∣∣∣ζχ(1

2
+ ε+ it

)∣∣∣∣2k dt < ∞,

and

lim
T→∞

−
∫ T

−T

∣∣∣∣ζ̃χ(1

2
+ ε+ it

)∣∣∣∣2kdt < ∞.

A sequence {an}∞n=1 is called totally multiplicative, if anam = anm
holds for all n,m ∈ N+.

Lemma 7.18. Let {an} be a non-trivial totally multiplicative se-
quence. If f(s) =

∑∞
n=1 ann

−s, then 1/f(s) ∼
∑∞

n=1 anµ(n)n−s, where
µ denotes the Möbius function.

Proof: Using Corollary 1.18 we obtain(
∞∑
n=1

ann
−s

)(
∞∑
m=1

amµ(m)m−s

)
=

∞∑
k=1

k−s

∑
n|k

anak/n µ(k/n)
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=
∞∑
k=1

akk
−s

∑
n|k

µ(k/n)


= a1

= 1.

Theorem 7.19. If a sequence {an} ∈ `2 is totally multiplicative,
then for a.e. character χ ∈ K,

∑∞
n=1 anχ(n)n−s extends analytically to

a zero-free function in Ω0.

Proof: Write f(s) =
∑∞

n=1 ann
−s and, note that fχ =∑∞

n=1 anχ(n)n−s also has totally multiplicative coefficients. Thus

1

fχ(s)
=

∞∑
n=1

anχ(n)µ(n)n−s = gχ(s),

where g(s) =
∑∞

n=1 anµ(n)n−s ∈ H2, since µ(n) ∈ {0,±1} for all
n ∈ N+. By Theorem 7.15, the function gχ belongs to H2

i (Ω0) for a.e.
χ. Consequently, fχ must be zero-free in the right half-plane for the
same χ’s. �

We obtain the following “probabilistic version” of the Riemann hy-
pothesis.

Corollary 7.20. (Helson) For almost every character χ ∈ K,
ζχ(s) =

∑∞
n=1 χ(n)n−s is zero-free in Ω1/2.

Proof: Since {n−(1/2+ε)} ∈ `2, we conclude that∑
n n
−(1/2+ε)χ(n)n−s is zero-free in Ω0 for a.e. χ. In other words, ζχ is

zero-free in Ω1/2+ε for a.e. χ. Taking ε = 1
m

and intersecting the sets
of corresponding χ’s we conclude that ζχ is zero-free in Ω1/2 for a.e. χ.
�

7.3. Dirichlet’s theorem on primes in arithmetic progressions

We can write the set of all primes P as the disjoint union P =
P0 ∪ P1 ∪ P2, where

Pj = {p ∈ P; p ≡ j mod 3}

for j = 0, 1, 2.
Clearly, P0 = {3} and the following easy argument shows that P2

is infinite.
Proof: Suppose not and write P2 \ {2} = {q1, . . . , qN}. Let

M = 3q1 . . . qN + 2.
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Then M ≡ 2 mod 3 and M is not divisible 2 nor by any qj. Thus M
factors as M = q̃1 . . . q̃k with q̃j ∈ P1 for all j. This implies M ≡ 1
mod 3, a contradiction. �

It seems that no similar simple argument exists for P1. Nevertheless,
even more is true: every arithmetic progression without a common
factor contains a set of primes whose reciprocals are not summable.

Theorem 7.21. (Dirichlet, 1837) Let l, q ∈ N+ and assume that
gcd(l, q) = 1. Then ∑

p∈P; p≡l mod q

1

p
= ∞.

Before we prove this theorem, we need some preparation. Let q
be a natural number, and let us denote by Z∗q the group of units of
the ring Zq, that is, the group of invertible elements of Zq. It can be
checked that 0 ≤ k ≤ q − 1 is a unit in Zq if and only if gcd(k, q) = 1
(see Exercises ??), and so |Z∗q| = φ(q).

Let G be a finite abelian group, and let `2(G) be the Hilbert space
of functions f : G→ C normed by

‖f‖2 :=
1

|G|
∑
g∈G

|f(g)|2.

The dual group of G, denoted by Ĝ, is the set of characters, i.e. the
multiplicative functions from G to T.

Proposition 7.22. Let G be a finite abelian group. Then Ĝ forms
an orthonormal basis of `2(G).

Fix q, and let G := Z∗q. Any character e ∈ Ĝ = Ẑ∗q extends to Z by

e(n) =

{
e(n mod q), if gcd(n, q) = 1,

0, otherwise.

Then e : Z → T ∪ {0} is totally multiplicative. Any such function is
called a Dirichlet character modulo q. We denote the set of all Dirichlet
characters modulo q by Xq. The trivial Dirichlet character modulo q
is the periodic extension of the trivial character on Z∗q, that is,

χ0(n) =

{
1, if gcd(n, q) = 1,

0, otherwise.

We will identify Dirichlet characters modulo q with their restriction to
Z∗q.
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Suppose that gcd(l, q) = 1 and define δl : Z→ T ∪ {0} by

δl(n) =

{
1, n ≡ l mod q,

0, otherwise.

Then δl is q-periodic (but not multiplicative). We can regard it also as
an element of `2(Z∗q), and by expansion with respect to the orthonormal
basis obtain consisting of characters

δl(n) =
∑
χ

〈δl, χ〉χ(n),

if gcd(n, q) = 1. If gcd(n, q) 6= 1, the equality also holds, since both
sides vanish.

Let Re s > 1, then for any Dirichlet character, the series∑
p∈P χ(p)p−s converges absolutely. This justifies exchanging the or-

der of the sums in the following∑
p≡l mod q; p∈P

1

ps
=

∑
p∈P

δl(p)

ps

=
1

φ(q)

∑
p∈P

∑
χ∈Xq

χ(l)χ(p)p−s

=
1

φ(q)

∑
χ∈Xq

χ(l)
∑
p∈P

χ(p)

ps

=
1

φ(q)

[∑
p∈P

χ0(p)

ps
+
∑
χ 6=χ0

χ(l)
∑
p∈P

χ(p)

ps

]
(7.17)

Except for finitely many primes (the prime factors of q), χ0(p) = 1. By
Theorem 1.9 we can conclude that lims→1+

∑
p∈P χ0(p)p−s =∞. Thus,

to prove Theorem 7.21, it is enough to show that the second term in
(7.17) is bounded as s→ 1+.

Definition 7.23. Let χ be a Dirichlet character. Define the Dirich-
let L-function in Ω1 by

L(s, χ) :=
∞∑
n=1

χ(n)

n−s
.

Since χ is multiplicative, the same argument that proved the Euler
product formula (Theorem 1.5) shows that

∞∑
n=1

χ(n)

n−s
=
∏
p∈P

(
1

1− χ(p)p−s

)
.
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Note that

logL(s, χ) = −
∑
p∈P

log(1− χ(p)p−s)

= −
∑
p∈P

(
−χ(p)

p−s
+O(p−2s)

)
=

∑
p∈P

χ(p)

p−s
+O(1).

Therefore, to prove Theorem 7.21, it is enough to show that
lims→1+ L(s, χ) is finite and non-zero, for every non-trivial Dirichlet
character χ. If q = qr11 . . . qrkk , then

L(s, χ0) =
∏
p∈P

1

1− χ0(p)p−s
= (1− q−s1 ) . . . (1− q−sk )ζ(s).

Theorem 7.24. If χ is a non-trivial Dirichlet character, then
σc(L(s, χ)) = 0.

Proof: Since
∑∞

n=1 χ(n) does not converge, Theorem 3.12 yields

σc = lim supN→∞
log |sN |
logN

≥ 0. We can compute

q∑
n=1

χ(n) =

q∑
n=1

χ(n)χ0(n)

= φ(q) 〈χ, χ0〉`2(Z∗q)

= 0.

Hence, by periodicity of χ, we can conclude that |sN | ≤ φ(q), and so
σc = 0. �

Thus, lims→1+ L(s, χ) is finite, in fact, L(1, χ) is defined for every
non-trivial Dirichlet character χ. Hence, to prove Theorem 7.21, it
remains to show that L(1, χ) 6= 0, for χ 6= χ0.

We will now fix a non-trivial character η ∈ Xq. We distinguish two
cases.

Case I: η is not a real-valued character.

Lemma 7.25. For s > 1,
∏

χ∈Xq L(s, χ) ≥ 1.

Proof: By definition of the Dirichlet L-function and the power series
expansion of the natural logarithm, we have∏

χ∈Xq

L(s, χ) =
∏
χ

exp

(∑
p∈P

log
1

1− χ(p)p−s

)
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= exp

(∑
χ

∑
p∈P

∞∑
k=1

χ(pk)

kpks

)

= exp

(∑
p∈P

∞∑
k=1

1

kpks

∑
χ

χ(pk)

)
, (7.18)

where rearranging the order of summation is justified by absolute con-
vergence. For any character χ, χ(1) = 1 and hence

〈δ1, χ〉 =
1

φ(q)

∑
m∈Z∗q

δ1(m)χ(m)

=
1

φ(q)
.

Consequently, 1 = φ(q)〈δ1, χ〉, so that for any n ∈ N+, we obtain∑
χ

χ(n) = φ(q)
∑
χ

〈δ1, χ〉χ(n)

= φ(q)δ1(n)

≥ 0.

We conclude by (7.18) that
∏

χ L(s, χ) = exp(r), where r is non-
negative. �

Suppose that L(1, η) = 0. Then L(s, η) = O(s − 1) as s tends
to 1. Its conjugate η is also a character (and different from η, since
we assumed η takes on some non-real value somewhere). Moreover,

L(1, η) =
∑∞

n=1
η(n)
n

= L(1, η) = 0. Thus, as s→ 1+,∏
χ

L(s, χ) = L(s, χ0) · L(s, η) · L(s, η) ·
∏

χ 6=η,η,χ0

L(s, χ)

= O((s− 1)−1) O(s− 1) O(s− 1) O(1)
= O(s− 1),

which contradicts Lemma 7.25. This concludes case I.

Case II: η is real character.

Lemma 7.26. Let m ∈ N+. Then
∑

n|m η(n) ≥ 0. If m = l2 with

l ∈ N+, then
∑

n|m η(n) ≥ 1.

Proof: Write m = pr11 . . . prkk , then∑
n|m

η(n) =
k∏
j=1

[
η(1) + η(pj) + · · ·+ η(p

rj
j )
]
.
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Since η is real, the only possible values for η(pj) are 1, 0, and −1.
Corresponding to these cases, we observe that

η(1) + η(pj) + · · ·+ η(p
rj
j ) =


rj + 1, if η(pj) = 1,

1, if η(pj) = 0,

1, if η(pj) = −1, and rj is even,

0, if η(pj) = −1, and rj is odd.

Thus
∑

n|m η(n) is a product of non-negative factors. If m is a square,

all rj’s are even, so that
∑

n|m η(n) is a product of numbers larger than
1. �

Lemma 7.27. For all M ≤ N ∈ N+ and every σ > 0,

N∑
n=M

η(n)

nσ
= O(M−σ).

Proof: Let sn =
∑n

k=1 η(k) and use summation by parts as follows∣∣∣∣ N∑
n=M

η(n)

nσ

∣∣∣∣ =

∣∣∣∣ N−1∑
n=M

sn
[
n−σ − (n+ 1)−σ

]∣∣∣∣+O(M−σ)

≤ φ(q)
N−1∑
n=M

[
n−σ − (n+ 1)−σ

]
+O(M−σ)

= φ(q)
[
M−σ −N−σ

]
+O(M−σ)

= O(M−σ),

where the estimate |sn| ≤ φ(q) was demonstrated in the proof of The-
orem 7.24. �

For N ∈ N+, set

SN =
∑

m,n≥1; mn≤N

η(n)√
mn

.

The following two claims imply that L(1, η) 6= 0 and thus conclude the
proof of Theorem 7.21.
Claim 1: SN ≥ c logN , for some c > 0.

Proof: Write

SN =
N∑
k=1

∑
mn=k

η(n)√
mn

=
N∑
k=1

k−1/2
∑
n|k

η(n) ≥
b
√
Nc∑

l=1

1

l
,
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since Lemma 7.26 implies that if k = l2, then
∑

n|k η(n) ≥ 1 and in
general, the sum is non-negative. But we can estimate the last sum

from below by comparing to the integral
∫ √N

1
dx
x
≈ 1

2
logN . �

Claim 2: SN = 2
√
NL(1, η) +O(1).

Before we prove this claim, we need the following approximation.

Lemma 7.28. For K ≥ 1, we have

K∑
m=1

1√
m

=

∫ K+1

1

dx√
x

+ τ +O(
1√
K

),

where τ is some positive constant.

Proof: Let τm = 1√
m
−
∫ m+1

m
dx√
x
. Then

0 < τm <
1√
m
− 1√

m+ 1
, (7.29)

which is an alternating series. So
∑∞

m=1 τm converges to some number
τ between 0 and 1. We have

K∑
m=1

1√
m

=

∫ K+1

1

dx√
x

+
K∑
m=1

τm

=

∫ K+1

1

dx√
x

+ τ −
∞∑

m=K+1

τm.

and by (7.29) we know that
∑∞

m=K+1 τm = O( 1√
K

). �

We can now prove Claim 2.
Proof: (of Claim 2) Write

SN =
∑

m<
√
N,n>

√
N

1√
m

∑
nm≤N

η(n)√
n

+
∑
n≤
√
N

η(n)√
n

∑
nm≤N

1√
m

= SI + SII .

The first term is easy to estimate using lemmata 7.27 and 7.28:

SI =
∑

m<
√
N

1√
m

∑
√
N<n≤N/m

η(n)√
n

=
∑

m<
√
N

1√
m
O(N−1/4) = O(1).

As for the second term, we have

SII =
∑
n≤
√
N

η(n)√
n

∑
m≤
√
N

1√
m
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=
∑
n≤
√
N

η(n)√
n

[∫ N
n

+1

1

dx√
x

+ τ +O

(√
n

N

)]

=
∑
n≤
√
N

η(n)√
n

[
2

(√
N

n
+ 1− 1

)
+ τ +O

(√
n

N

)]

=
∑
n≤
√
N

η(n)√
n

[
2

√
N

n
+ (τ − 2) +O

(√
n

N

)]

= 2
√
N
∑
n≤
√
N

η(n)

n
+ (τ − 2)

∑
n≤
√
N

η(n)√
n

+
∑
n≤
√
N

η(n)O
(
N−1/2

)
.

The second term on the last line is O(1) by Lemma 7.27, and the third

term is O(1) since there are only
√
N terms in the sum. The first term

is a truncation of the series for L(1, η), so we get

SII = 2
√
N [L(1, η)−

∞∑
n=
√
N+1

η(n)√
n

] +O(1),

which equals

2
√
NL(1, η) +O(1)

by another application of Lemma 7.27. �

We have thus proved Theorem 7.21.

7.4. Exercises

1. Let q be in N+. Prove that gcd(n, q) = 1 if and only if there
exists m ∈ N+ such that mn ≡ 1, mod q.

2. Prove Proposition 7.22. (Hint: It is easy if G is cyclic. Then

show that Ĝ1 ×G2 = Ĝ1 × Ĝ2).

7.5. Notes

Theorem 7.15 is from [Hel69]. Our proof of Dirichlet’s theorem is
from [SS03]. This theorem was where Dirichlet series were first used
(and, in honor of this, were named after Dirichlet).





CHAPTER 8

Zero Sets

There is an interplay between the number of zeroes of a holomorphic
function and its size. Roughly speaking, the more zeroes a function
has, the larger it must be. The simplest example are polynomials —
if a polynomial has n zeroes, it must be of degree at least n thus
|P (z)| ≥ C|z|n as |z| → ∞. More generally, assume that f ∈ Hol (D)
is normalized so that f(0) = 1. Then, log |f(z)| is subharmonic in D
and so

0 = log |f(0)| ≤
∫
D

log |f(z)| dA(z).

Thus log |f(z)| has to be “large enough” to offset the negativity of
log |f(z)| around points where f vanishes.

Definition 8.1. Let F be a family of holomorphic functions de-
fined on a set U and Z ⊂ U . We say that Z is a zero set for F , if there
exists a function f ∈ F that vanishes exactly on Z, that is, such that
Z = f−1{0}.

It is well-known that for any connected open set U ⊂ C, the zero
sets for F = Hol (U) are the sets Z ⊂ U that have no accumulation
points inside U .

For the Hardy spaces on the unit disk, the zero sets are well under-
stood:

Theorem 8.2. Let {λn}n ⊂ D be a sequence, 0 < p ≤ ∞. The
following are equivalent

• {λn} is zero set for Hp(D),
• {λn} is zero set for H∞(D),
•
∑

n(1− |λn|) <∞,
•
∏

n
λn
|λn|

z−λn
1−λnz

converges to a non-zero function.

The fact that the zero sets for Hp(D) are independent of p follows
from inner-outer factorization. An analogous factorization theorem
does not hold for the polydisk and the zero sets for Hp(Dn) depend on
p when n > 1.

Precise descriptions of the zero sets for the Bergman space or the
Dirichlet space are not known.
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Consider a Dirichlet series of the form f ∼
∑∞

n=1 a2n2−ns. Clearly,
if λ ∈ σc(f) is a zero of f , then so is λ+ 2πi

log 2
k, for any k ∈ Z. The fol-

lowing theorem shows that the zero sets of Dirichlet series have similar
behavior at least in the half-plane Ωσu(f).

Theorem 8.3. Let f ∼
∑∞

n=1 ann
−s, f(s0) = 0 and s0 > σu(f).

Then, for every δ > 0, the strip {|Re (s− s0)| < δ} contains infinitely
many zeroes.

Proof: Since the set of zeroes is discrete, we can find 0 < τ <
min {δ, σ0 − σu} such that C = ∂B(s0, τ) does not contain any zero
of f . By compactness, m := infs∈C |f(s)| > 0. As the series converges
uniformly in Ωs0−τ , we can find N ∈ N such that∣∣∣∣f(s)−

N∑
n=1

ann
−s
∣∣∣∣ < m

4
, for all s ∈ Ωs0−τ

By Theorem 6.14, we can find an arbitrarily large t0 ∈ R so that for
all primes p ≤ N , t0 log p ≈ 0 mod 1. More precisely,∣∣n−σeit0 logn−n−σ

∣∣ < m

4N(|an|+ 1)
, for all 1 ≤ n ≤ N, σ ∈ [σ0−τ, σ0+τ ].

Consequently, by triangle inequality,

|f(s)− f(s+ it0)| ≤ m

2
+

N∑
n=1

an
∣∣n−s − n−s+it0∣∣ ≤ 3m

4
.

By Rouché’s theorem, it follows that f(s + it0) has a zero inside C,
that is, f(s) has a zero inside of C + it0. Since t0 is arbitrarily large,
we can find infinitely many disjoint disks of this form. �

We have an immediate corollary.

Corollary 8.4. If ϕ ∈ Mult (H2) and ϕ(s0) = 0 for some s0 ∈ Ω0,
then ϕ vanishes at infinitely many points.

Question 8.5. Does the above theorem hold for σc(f) < σ0 <
σu(f)?

Note that the function 1
ζ(s)

has a zero s0 = 1 and no other zero in

the set {Re s > 1/2}, if the Riemann hypothesis holds, so the answer
to the question should be negative. In [MV, Problem 24], M. Balazard
poses the similar question of whether a convergent Dirichlet series can
have a single zero in a half-plane.
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Let us define the uniformly local Hp space on Ω1/2 by

Hp
∞(Ω1/2) :=

{
g ∈ Hol (Ω1/2) :

[
sup
θ∈R

sup
σ>1/2

∫ θ+1

θ

|g(σ+it)|p dt
] 1
p

<∞
}
.

Then, clearly,
Hp(Ω1/2) ⊂ Hp

∞(Ω1/2),

and

f ∈ Hp
∞(Ω1/2) =⇒ f(s)

s
∈ Hp(Ω1/2), for p > 1.

A deeper result is the following, which is a variant of Hilbert’s
inequality. See [Mon94] or [HLS97] for a proof.

Theorem 8.6. H2 ↪→ H2
∞(Ω1/2).

We defineHp by to be the completion of the set of all finite Dirichlet
series with respect to the norm

‖f‖Hp :=

[
lim
T→∞

1

2T

∫ T

−T
|f(it)|p dt

]1/p

.

Corollary 8.7. H2n ↪→ H2n
∞ (Ω1/2), for all n ∈ N+.

Question 8.8. Does Hp ↪→ Hp
∞(Ω1/2) hold for all p > 1 (p ≥ 1)?

One might expect that the answer to the question has to be affir-
mative. As a warning, we recall a conjecture of Hardy and Littlewood
in 1935 that for any q ≥ 2 there exist a constant cq > 0 such that∫ 2π

0

∣∣∣∣∑ ane
int

∣∣∣∣q dt ≤ cq

∫ 2π

0

∣∣∣∣∑ |an|eint
∣∣∣∣q dt.

The conjecture turns out to be true precisely when q is an even integer
(this was shown by Bachelis in 1973 [Bac73]).

Suppose that f ∈ H2. Then f(s)
s
∈ H2(Ω1/2), and hence its zeroes

sk = σk + itk satisfy ∑
k

σk − 1/2

1 + |sk|2
< ∞.

Also, if we define

A(θ) :=
∑

θ<tk<θ+1

(
σk − 1/2

)
,

then, by the above condition, A(θ) <∞, for all θ ∈ R.

Theorem 8.9. (Hedelmalm, Lindqvist, Seip) If f ∈ H2, and
f 6≡ 0, then supθ∈RA(θ) <∞.
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Proof: Suppose not, then there exist a sequence {θj}j ⊂ R such
that A(θj)→∞. Define fj(s) := f(s+ θj); then

‖fj‖H2 = ‖f‖H2 .

Thus {fj}j is a bounded sequence in H2, hence {fj(s)/s}j i is also

bounded in H2(Ω1/2). Let {sjk}k be the zeroes of fj(s)/s. The condition
A(θj)→∞ implies that∑

k

σjk − 1/2

1 + |sjk|2
→∞ as j →∞. (8.10)

Using inner-outer factorization, this implies that fj’s converge to 0
uniformly on compact sets, since the Blaschke product part does by
(8.10), and the outer parts are uniformly bounded on compact sets, by
the norm control. But by Proposition 7.11, some subsequence of {fj}j
converges uniformly on compact subsets to a vertical limit function
fχ =

∑
n anχ(n)n−s, where χ is a character. We conclude that fχ ≡ 0,

a contradicton. �

Question 8.11. How can the zero sets ofH2,H2
w, etc. be classified?



CHAPTER 9

Interpolating Sequences

9.1. Interpolating Sequences for Multiplier algebras

Definition 9.1. Let H be a Hilbert space of analytic functions on
X with reproducing kernel k. We say that (λn) ⊂ X is an interpolating
sequence for Mult (H), if

{(ϕ(λn)), ϕ ∈ Mult (H)} = `∞.

In other words, we require that the map E : φ 7→ (φ(zn)) maps
Mult (H) onto `∞ (it always maps into, by Proposition 11.9). By ba-
sic functional analysis, whenever one has an interpolating sequence, it
comes with an interpolation constant.

Indeed, consider the quotient Banach space X = Mult (H)/N ,
where

N := {f : f(zn) = 0, ∀ n ∈ N}

is the kernel of E. We obtain a bounded operator Ẽ : X → `∞, which is
one-to-one and onto. By the open mapping theorem, it has a bounded
inverse. We conclude that if {zn}n is an interpolating sequence for
Mult (H), then there exists a constant C > 0 such that for any sequence
(an)n ∈ `∞, there exists a function f ∈ Mult (H) such that f(zn) = an
for all n ∈ N and ‖f‖∞ ≤ C‖(an)‖∞. The infimum of those C for
which this holds is called the interpolation constant of the sequence.

The exact description of interpolating sequences for particular
spaces is hard. There is a general result due to S. Axler [Axl92] show-
ing that sequences that tend to the boundary will, in many spaces,
have subsequences that are interpolating, but verifying the condition
of the theorem can be difficult.

Theorem 9.2. (Axler) Let H be a separable reproducing kernel
Hilbert space on X, and assume that Mult (H) separates points of X.
Suppose that (xn) is a sequence with the property that for any subse-
quence (xnk), there exists some φ ∈ Mult (H) such that limk→∞ φ(xnk)
does not exist. Then (xn) has a subsequence that is an interpolating
sequence for Mult (H).
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L. Carleson in 1958 characterized interpolating sequences for
H∞(D). For later convenience, we shall apply a Cayley transform and
quote the result for H∞(Ω0). First we need to introduce a metric.

Definition 9.3. Let A be a normed algebra of functions on the
set X. We define the Gleason distance ρA between two points x and y
by

ρA(x, y) = sup{|φ(y)‖ : φ(x) = 0, ‖φ‖ ≤ 1}.
When the algebra is understood, we shall write ρ.

For the algebra H∞(D), the Gleason distance is called the pseudo-
hyperbolic metric, and , and it is given by

ρH∞(D)(z, w) =

∣∣∣∣ z − w1− w̄z

∣∣∣∣ .
In the right half-plane, this becomes

ρH∞(Ω0)(s, u) =

∣∣∣∣s− us+ ū

∣∣∣∣ .
In the polydisk, it is straightforward to show

ρH∞(Dm)(z, w) = max
1≤j≤m

∣∣∣∣ zj − wj1− w̄jzj

∣∣∣∣ . (9.4)

Theorem 9.5. (Carleson) Let (sj) ⊂ Ω0. Then the following are
equivalent:

(1) (sj) is an interpolating sequence for H∞(Ω0).

(2) infj
∏

i 6=j

∣∣∣ si−sjsi+s̄j

∣∣∣ > 0.

(3) infi 6=j

∣∣∣ si−sjsi+s̄j

∣∣∣ > 0 and there exists C > 0 such that for every

f ∈ H2(Ω0),

σj
∑
j

|f(sj)|2 ≤ C‖f‖2
2.

Carleson’s theorem is very important, and the various conditions in
it have names.

Definition 9.6. Let A be a normed algebra of functions on the
set X, and let ρ = ρA be the Gleason distance. We say a sequence (xn)
is weakly separated if infm6=n ρ(xm, xn) > 0.

We say the sequence is strongly separated if

inf
n

[sup{|φ(xn)| : φ(xm) = 0 ∀ m 6= n, ‖φ‖ ≤ 1}] > 0. (9.7)
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In H∞(Ω0), a sequence is strongly separated if and only if the a
priori stronger condition

inf
n

[∏
m6=n

ρ(sm, sn)

]
> 0

holds; this is an elementary consequence of the fact that dividing out
by a Blaschke product does not increase the norm. In the polydisk, as
we shall see in Theorem 9.11, these two conditions are different.

Definition 9.8. Let H be a reproducing kernel Hilbert space on
X, and let µ be a measure on X. We say µ is a Carleson measure for
H if there exists a constant C such that∫

|f |2dµ ≤ C‖f‖2
H ∀ f ∈ H.

With these definitions, condition (2) in Carleson’s theorem becomes
the statement that the sequence is strongly separated, and condition
(3) is that the sequence is weakly separated and the measure

∑
σjδsj

is a Carleson measure for H2(Ω0).

Question 9.9. What are the interpolating sequences for
Mult (H2

w)?

The answer is not known in general, but K. Seip [Sei09] showed
that for bounded sequences, the interpolating sequences for Mult (H2)
are the same as for the much larger space H∞(Ω0). Let us use H∞ to
denote Mult (H2), which by Theorem 6.42 is the bounded functions in
Ω0 that have a Dirichlet series:

H∞ = H∞(Ω0) ∩ D.

We shall writeH∞m for those f inH∞ whose Dirichlet series is supported
on Nm.

Theorem 9.10. (Seip) Let (sj) be a bounded sequence in Ω0. Then
the following are equivalent:

(i) It is an interpolating sequence for H∞.
(ii) It is an interpolating sequence for H∞2 .
(iii) It is an interpolating sequence for H∞(Ω0).
Moreover, if {sj} is contained in a vertical strip of height less than

2π
log 2

, and is bounded horizontally, these three conditions are equivalent

to (sj) being an interpolating sequence for H∞1 .

To prove Seip’s theorem, we need a result by B. Berndtsson, S.-Y.
Chang and K.-C. Lin [BCL87] that gives a sufficient condition for a
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sequence to be interpolating on the polydisk. We shall explain what
condition (3) means in Section 9.2.

Theorem 9.11. (Berndtsson, Chang and Lin) Consider the
three statements

(1) There exists c > 0 such that∏
j 6=i

ρH∞(Dm)(λi, λj) ≥ c

for all i.
(2) The sequence {λi}∞i=1 is an interpolating sequence for H∞(Dm).
(3) The sequence {λi}∞i=1 is weakly separated and the associated

Grammian with respect to Lebesgue measure σ is bounded.
Then (1) implies (2) and (2) implies (3). Moreover the converse of

both these implications is false.

To prove Seip’s theorem, we need to compare Gleason differences
in different algebras. For the remainder of the section, we shall adopt
the following notation:

dm(z, w) = ρH∞(Dm)(z, w) = max
1≤j≤m

∣∣∣∣ zj − wj1− w̄jzj

∣∣∣∣
ρ(s, u) = ρH∞(Ω0)(s, u) =

∣∣∣∣s− us+ ū

∣∣∣∣
ρm(s, u) = dm((2−s, ., p−sm ), (2−u, ., p−um ))

For points s, u in Ω0, we shall write

s = σ + it, u = υ + iy.

Lemma 9.12. For each n ≥ 2,

d1(n−s, n−u) ≤ ρ(s, u)

ρ2(s, u) ≤ ρ(s, u).

Proof: The first inequality is because the map s 7→ n−s is a holo-
morphic map from Ω0 to D, so it is tautologically distance decreasing
in the Gleason distances for the corresponding H∞ spaces.

The second inequality follows from the first. 2

Lemma 9.13. For every M > 0, there exists γ > 0 such that if
s, u ∈ Ω0 and |s|, |u| ≤M , then

ρ2(s, u) ≥ ρ(s, u)γ.

If in addition |t− y| ≤ H < 2π
log 2

, then we can choose γ so that

ρ1(s, u) ≥ ρ(s, u)γ.
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Figure 1. Curve ρ2 = ργ fits outside shaded area

Proof: It is sufficient to prove that there exist constants c, C > 0
such that

(1) ρ2(s, u) ≥ cρ(s, u)
(2) 1− ρ2(s, u) ≤ C(1− ρ(s, u)).

(See Figure 9.1).
To prove (1), let K be the closed semi-disk

K = {s : σ ≥ 0, |s| ≤M}.

Define the function ψ on K ×K by

ψ =


ρ(s,u)
ρ2(s,u)

if s 6= u, and s, u ∈ Ω0

1 if <s or <u = 0
2σ−2−σ

2σ log 2
if s = u ∈ Ω0.

It is straightforward to check that ψ is continuous, so we can set

c = 1/max
K×K

ψ(s, u)
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and get (1).
For (2), we observe that

ρ2(s, u) = max
p=2,3

∣∣∣∣p−s − p−u1− p−s−ū

∣∣∣∣ .
Writing s = σ + it and u = υ + iy, we get

1− ρ(s, u)2 = 1−
∣∣∣∣s− us+ ū

∣∣∣∣2
=

4συ

(σ + υ)2 + (t− y)2
. (9.14)

We also have

1− ρ2(s, u)2 = min
p=2,3

[
1− p−2σ + p−2υ − 2<p−s−ū

1− 2<p−s−ū + p−2σ−2υ

]
= min

p=2,3

1 + p−2σ−2υ − p−2σ − p−2υ

1− 2<p−s−ū + p−2σ−2υ

= min
p=2,3

(1− p−2σ)(1− p−2υ)

(1− p−σ−υ)2 + 2p−σ−υ(1− cos[log p(t− y)])
.(9.15)

We would like to show that for some constant CM we have that

1− ρ2(s, u)2 ≤ CM
συ

(σ + υ)2 + (t− y)2
, (9.16)

as this, together with (9.14), would give (2).
First, assume that

|t− y| ≤ H <
2π

log p
. (9.17)

Then, as 1−p−x is comparable to x on [0, 2M ], we see that the numera-
tor in (9.15) is comparable to συ, and the first term in the denominator
is comparable to (σ + υ)2. As for the second term, a Taylor series ar-
gument shows that for t− y close to 0,

1− cos[log p(t− y)] ≈ (t− y)2. (9.18)

Continuity and compactness show that (9.18) remains true (with some
constants) if (9.17) holds, as the left-hand side can then vanish only at
t− y = 0. This gives us the second part of the lemma, where we only
need to use the prime p = 2.

If (9.17) fails with p = 2, there will be points where t 6= y but

1− cos[log 2(t− y)] = 0.

However, one cannot simultaneously have

1− cos[log 3(t− y)] = 0,
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since log 2 and log 3 are rationally linearly independent. So by com-
pactness and continuity again, we get (9.16). �

Proof of Thm. 9.10: Suppose (sj) is bounded and interpolating
for H∞(Ω0). Then by Theorem 9.5 and Lemma 9.13, we have

inf
j

∏
i 6=j

ρ2(si, sj) ≥ 0.

Therefore by Theorem 9.11, the sequence ((2−sj , 3−sj)) is interpolating
for H∞(D2). So if (aj) is any target in `∞, there exists some ψ ∈
H∞(D2) satisfying

ψ(2−sj , 3−sj) = aj.

Then
φ(s) = ψ(2−s, 3−s)

solves the interpolation problem in H∞(Ω0) ∩ D.
Finally, if the vertical height of a rectangle containing all the points

is less than 2π/ log 2, the second part of Lemma 9.13 shows that one
can interpolate with a function of the form ψ(2−s), where ψ ∈ H∞(D).
�

9.2. Interpolating sequences in Hilbert spaces

Let Hk be a reproducing kernel Hilbert space on a set X. Given a
sequence (λi) in X, let gi denote the normalized kernel function at λi:

gi :=
1

‖kλi‖
kλi .

Define a linear operator E by

E : f 7→ 〈f, gi〉. (9.19)

We say the sequence (λi) is an interpolating sequence for Hk if the map
E is into and onto `2. (Note that because gi is normalized, E necessarily
maps into `∞; but it does not have to map into `2).

We say that a set of vectors {vi} in a Banach space is topologically
free if no one is contained in the closed linear span of the others. This
is equivalent to the existence of a dual system, vectors {hi} in the dual
satisfying

〈hj, vi〉 = δij.

The dual system is called minimal if each hj is in ∨{vi}.

Theorem 9.20. The sequence (λi) is an interpolating sequence for
Hk if and only if the Gram matrix G = 〈gj, gi〉 is bounded and bounded
below.
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Proof: (⇒) Suppose E is bounded and onto `2. As E∗ej = gj, we
have

〈gj, gi〉 = 〈EE∗ej, ei〉
is bounded. By the open mapping theorem, E has an inverse

E−1 : `2 → ∨{gi} ⊆ Hk.

Let hj = E−1ej. Then

G−1 = 〈hj, hi〉
is bounded.

(⇐) Suppose G is bounded and bounded below. Define

L : `2 → Hk

ej 7→ gj.

Since G is bounded, L is bounded, and E = L∗ is therefore a bounded
map into `2. Since G is bounded below, the minimal dual system {hj}
to {gj} has a bounded Gram matrix (see Exercise 9.37), and if (aj) is
any sequence in `2, we have

E(
∑

ajhj) = (aj),

so E is onto. �

Theorem 9.21. Any interpolating sequence for Mult (Hk) is an
interpolating sequence for Hk.

Proof: Suppose (λi) is an interpolating sequence for Mult (Hk).
Then there is a constant M such that for every sequence (wi) in the
unit ball of `∞, the map

R : gi 7→ w̄igi

extends to a linear operator on Hk of norm at most M (since it is
the adjoint of a multiplication operator that solves the interpolation
problem). Therefore, for all finite sequences of scalars (cj), we have

‖
∑

cjw̄jgj‖2 ≤ M2‖
∑

cjgj‖2.

Write this as ∑
i,j

cj c̄iw̄jwi〈gj, gi〉 ≤ M2
∑
i,j

cj c̄i〈gj, gi〉,

let wj = e2πitj and integrate with respect to each tj to get∑
|cj|2 ≤ M2

∑
i,j

cj c̄i〈gj, gi〉.
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This proves G is bounded below. A similar argument, with wj = e2πitj

and cj = aje
2πitj gives∑

i,j

aj āi〈gj, gi〉 ≤ M2
∑
|aj|2,

so G is also bounded. By Theorem 9.20, we are done. �

Interpolating sequences for H2 and H2
w where the weights wn are

(log n)α, as in (6.34), are studied in [OS08]. In particular, they show
that for bounded sequences, the interpolating sequences are the same
as in the corresponding space of analytic functions that do not have to
have Dirichlet series representations.

9.3. The Pick property

A particularly useful feature of the Hardy space H2 is that it has
the Pick property.

Definition 9.22. The reproducing kernel Hilbert space Hk on X
has the Pick property if, for every subset F ⊆ X, and every function
ψ : F → C, if the linear operator defined by

T : kλ 7→ ψ(λ)kλ

is bounded by C on ∨{kλ : λ ∈ F}, then there is a multiplier φ of Hk,
with multiplier norm bounded by C, and satisfying

φ(λ) = ψ(λ) ∀ λ ∈ F.

Theorem 9.23. If Hk has the Pick property, then the interpolating
sequences for Mult (Hk) and Hk coincide.

Proof: Suppose (λi) is an interpolating sequence for Hk, so there
are constants c1 and c2 so that

c1

∑
|ai|2 ≤ ‖

∑
aigi‖2 ≤ c2

∑
|ai|2.

Let (wi) be a sequence in the unit ball of `∞. Define R by

R : gi 7→ w̄igi.

Then

〈
[
c2

c1

−R∗R
]
gj, gi〉 =

c2

c1

〈gj, gi〉 − wiw̄j〈gj, gi〉

≥ c2

c1

(c1δij)− wiw̄j(c2δij)

= c2δij(1− |wi|2)

≥ 0.
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Therefore R is bounded by
√
c2/c1, so by the Pick property, there is a

multiplier φ of Hk with norm bounded by
√
c2/c1 such that φ(λi) = wi.

�

The idea of using the Pick property to reduce the characterization
of interpolating sequences for a multiplier algebra to the more tractable
problem of characterizing them for a Hilbert space was originally due
to H.S. Shapiro and A. Shields, in the case of H∞(D) [SS61]. It was
developed more systematically by D. Marshall and C. Sundberg in
[MS94].

The space H2 does not have the Pick property — one way to see
this is that the bounded interpolating sequences for H2 are interpo-
lating sequences for H2(Ω1/2) [OS08], whereas bounded interpolating
sequences for the multiplier algebra can only accumulate on the bound-
ary of Ω0 by Theorem 9.10. However, there are several Hilbert spaces
of Dirichlet series that have the Pick property (and a stronger, matrix-
valued version, called the complete Pick property).

Theorem 9.24. If k(s, u) = η(s + ū), then this has the complete
Pick property for each of the following η’s:

η(s) =
1

2− ζ(s)
(9.25)

η(s) =
ζ(s)

ζ(s) + ζ ′(s)

η(s) =
ζ(2s)

2ζ(2s)− ζ(s)

η(s) =
P (2)

P (2)− P (2 + s)
. (9.26)

In (9.26), the function P (s) is the prime zeta function , defined by

P (s) =
∑
p∈P

p−s.

Definition 9.27. A sequence (λi) satisfies Carleson’s condition in
the reproducing kernel Hilbert space Hk if there exists a constant C so
that ∑

i

|f(λi)|2

‖kλi‖2
≤ C‖f‖2 ∀ f ∈ Hk.

Definition 9.28. The sequence (λi) is weakly separated in the
reproducing kernel Hilbert space Hk if there exists a constant c > 0 so
that, for all i 6= j, the normalized reproducing kernels satisfy

|〈gi, gj〉| ≤ 1− c.
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Theorem 9.29. [AHMR17] Let Hk have the complete Pick prop-
erty. Then a sequence (λi) is an interpolating sequence if and only if
it is weakly separated and satisfies Carleson’s condition.

9.4. Sampling sequences

Definition 9.30. Let K be a Hilbert space of functions on a set
X with bounded point evaluations and denote the reproducing kernel
at ζ ∈ X by kζ . We say that a sequence {zn}n ⊂ X is a sampling
sequence, if for all f ∈ K, we have∑

n

|f(zn)|2

‖kzn‖2
≈ ‖f‖2

K.

Equivalently, one can say that the operator E : K → `2 given by

E : f 7→
( f(zn)
‖kzn‖

)
n

is bounded and bounded below. Another way to

rephrase this is to require that the sequence of normalized reproducing
kernels

{ kzn
‖kzn‖

}
n

forms a frame.

For weighted Bergman spaces on the disk there is a complete de-
scription of sampling sequences in terms of lower density of the se-
quence.

Proposition 9.31. There are no sampling sequences for the Hardy
space of the disk.

Proof: Suppose that {zn}n ⊂ D is a sampling sequence for H2(D).
Then {zn}n cannot be a Blachke sequence, since the corresponding
Blaschke product f would satisfy 0 < ‖f‖2 < ∞ and

∑
n |f(zn)|2 ·

‖kzn‖−2 = 0. If {zn}n is not a Blaschke sequence, we consider the
function f(z) = 1. Then∑

n

|f(zn)|2

‖kzn‖2
=
∑
n

(1− |zn|2) = ∞,

while ‖f‖2 <∞, a contradiction. �

However, there exists “generalized sampling sequences” for the
Hardy space, that is, sequences satisfying

|f(0)|2 +
∑
n

|f ′(zn)|2

‖k̃zn‖2
≈ ‖f‖2

2,

where k̃zn is the reproducing kernel for the derivative. But this is
because differentiation maps the Hardy space (modulo constants) iso-
metrically onto a weighted Bergman space.

There is another proof of the fact that H2(D) does not admit any
sampling sequence, using the fact that multiplication by z is isometric.
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The same idea works for H2. The reader is invited to recast that proof
for the Hardy space.

Proposition 9.32. There are no sampling sequences on H2.

Proof: The multiplication operator MN−s is an isometry on H2.
On the other hand, the sequence fN := MN−sf tends to 0 uniformly

on compact sets in Ω1/2. Thus
∑

n
|fN (sn)|2
‖ksn‖2

→ 0 as N → ∞ and thus

cannot be comparable to ‖fN‖2 = ‖f‖2. �

A similar argument shows that “generalized sampling sequences”
involving f ′(sn) do not exists.

Question 9.33. Is there a sensible interpretation of “{sn}n is a
generalized sampling sequence for H2”? If so, how are these character-
ized?

9.5. Exercises

Exercise 9.34. Prove Equation (9.4). (Hint: use an automorphism
of Dm to move one point to the origin).

Exercise 9.35. Prove that any sequence that tends sufficiently
quickly to ∂D is an interpolating sequence for H∞(D).

Exercise 9.36. Fill in the details of the proof of (9.16).

Exercise 9.37. Prove that if (hi) is the minimal dual system of
(gi), then the inverse of the Gram matrix G = 〈gj, gi〉 is the matrix
〈hj, hi〉.

9.6. Notes

For a much more comprehensive treatment of interpolating se-
quences, we recommend the excellent monograph [Sei04] by K. Seip.
For a concise treatment forH∞(D) andH2(D), including Theorem 9.20,
see [Nik85].

Axler’s theorem 9.2 was proved for multipliers of the Dirichlet space
[Axl92], but the argument readily adapts to the stated version. Car-
leson’s theorem is in [Car58]. Seip’s paper [Sei09] contains much
more information on interpolating sequences forH∞ than Theorem 9.10
alone.

Necessary and sufficient conditions for a sequence to be interpo-
lating for H∞(D2) are given in [AM01], but they do not completely
resolve the issue. For example, the following is still open:

Question 9.38. If λn is strongly separated in H∞(D2), is it an
interpolating sequence?
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Interpolating sequences for H2 and H2
w were first considered in

[OS08]. See also [Ols11].
The fact that (9.25) gives rise to a Pick kernel was observed in

[McCa04]. Necessary and sufficient conditions for a general kernel to
have the complete Pick property, a matrix valued version of the Pick
property, are given by P. Quiggin [Qui93, Qui94] and S. McCullough
[McCu92, McCu94]; see also [AM00]. The application to kernels
of the form discussed in Theorem 9.24 is discussed in [?]. The kernel
coming from (9.26) is particularly interesting, as it is in some sense
universal amongst all kernels with the complete Pick property. See [?]
for details.





CHAPTER 10

Composition operators

Definition 10.1. Let K be a Hilbert space of analytic functions
on X with reproducing kernel k and let ϕ : X → X be an ana-
lytic function. To ϕ we associate a composition operator Cϕ given
by Cϕ(f) := f ◦ ϕ.

The study of such operators was originally inspired by the following
result.

Theorem 10.2. (Littlewood’s subordination principle) For
any analytic ϕ : D→ D, the operator Cϕ is bounded on H2(D).

J. Shapiro proved in 1987 [Sha87] that Cϕ is compact on H2(D),
if and only if “ϕ does not get too close to ∂D too often.”

An interesting property of composition operators is that their ad-
joints permute the kernel functions. Indeed,

〈f, C∗ϕkζ〉 = 〈Cϕf, kζ〉
= 〈f ◦ ϕ, kζ〉
= f(ϕ(ζ))

= 〈f ◦ ϕ, kζ〉
= 〈f, kϕ(ζ)〉,

so C∗ϕkζ = kϕ(ζ).
Recently, various properties of Cϕ were studied in terms of prop-

erties of ϕ on the Hardy space, the Dirichlet space and the Bergman
space.

We now gather some results about composition operators on H2.
Let Φ : Ω1/2 → Ω1/2 be an analytic function. Note that CΦ : f 7→
f ◦ Φ might not map Dirichlet series to Dirichlet series. Indeed, if
f ∼

∑∞
n=1 ann

−s, then (f ◦Φ) ∼
∑

n ann
−Φ(s). The next two theorems

are due to J. Gordon and H. Hedenmalm [GH99].

Theorem 10.3. An analytic function Φ : Ω1/2 → Ω1/2 gives rise to
a composition operator CΦ : H2 → D, if and only if Φ(s) = c0s+ϕ(s),
where c0 ∈ N and ϕ ∈ D.

113
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Theorem 10.4. (Gordon, Hedenmalm) An analytic function
Φ : Ω1/2 → Ω1/2 gives rise to a bounded composition operator CΦ :
H2 → H2, if and only if Φ(s) = c0s+ ϕ(s), where c0 ∈ N, ϕ ∈ D, and
Φ has an analytic extension to Ω0 such that Φ(Ω0) ⊂ Ω0, if c0 > 0 and
Φ(Ω0) ⊂ Ω1/2, if c0 = 0.

They also proved that CΦ is a contraction (i.e., ‖CΦ‖ ≤ 1), if and
only if c0 > 0 in the above theorem. Furthermore, the same theorem
holds for Hp with 2 ≤ p < ∞ and the conditions are necessary for
1 < p < 2.

Compactness of composition operators was studied by F. Bayart.
He proved the following theorem [Bay03]:

Theorem 10.5. (Bayart) The composition operator CΦ is compact
on Mult (H2

w), if and only if Φ(Ω0) ⊂ Ωε, for some ε > 0.

He also proved that if CΦ is a compostion operator on H2, then
QCΦQ−1 is a composition operator on H2(T∞), i.e., there exists ψ :
D∞ ∩ `2 → D∞ ∩ `2 such that Cψ = QCΦQ−1. This allows one to
construct compact composition operators on H2 that are not Hilbert-
Schmidt.
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Appendix

11.1. Multi-index Notation

When dealing with power series in several variables, it is easy to
become overwhelmed with subscripts. Multi-index notation is a way
to make formulas easier to read.

We fix the number of variables, d say, and assume that is under-
stood. We write

α = (α1, α2, . . . , αd)

for a multi-index, where α is in Nd or Zd. Then∑
cαz

α

stands for ∑
cα1,α2,...,αdz

α1
1 zα2

2 · · · z
αd
d .

We define

|α| =
d∑
r=1

|αr|

α! = α1!α2! · · ·αd!

11.2. Schwarz-Pick lemma on the polydisk

Schwarz’s lemma on the disk has a non-infinitesimal version, called
the Schwarz-Pick lemma. Both these lemmata generalize to the poly-
disk.

Lemma 11.1. (Schwarz-Pick) If f : D→ D is holomorphic, then∣∣∣∣∣ f(w)− f(z)

1− f(w)f(z)

∣∣∣∣∣ ≤
∣∣∣∣ w − z1− wz

∣∣∣∣ ,
for all z, w ∈ D.

Proof: For ξ ∈ D, let ψξ be the automorphism of the disk that

exchanges 0 and ξ, that is, ψξ(z) = ξ−z
1−ξz . Consider the function g :

115
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D→ D given by g = ψf(w) ◦ f ◦ ψw. Choose ζ = ψw(z) so that

|g(ζ)| = |(ψf(w) ◦ f ◦ψw)(ψw(z))| = |ψf(w)(f(z))| =

∣∣∣∣∣ f(w)− f(z)

1− f(w)f(z)

∣∣∣∣∣
and

|ζ| = |ψw(z)| =

∣∣∣∣ w − z1− wz

∣∣∣∣ .
Also, g(0) = 0 so that |g(ζ)| ≤ |ζ| by the classical Schwarz lemma. �

Lemma 11.2. Schwarz’s lemma on the polydisk Let f ∈
H∞(DN) satisfies ‖f‖∞ ≤ 1 and f(0) = 0. Then

|f(w1, . . . , wN)| ≤ max
1≤i≤N

|wi|.

Proof: Let

r = max
i=1,...,N

|wi|.

Define g ∈ H∞(D) by

g(z) := f(
z

r
(w1, . . . , wN)).

Then ‖g‖∞ ≤ 1, and g(0) = 0. Apply Schwarz’s lemma to g to conclude
|g(r)| ≤ r. �

Lemma 11.3. Let f ∈ H∞(D) satisfies ‖f‖∞ ≤ K and f(0) = 1.
Then f 6= 0 on 1

K
D.

Proof: We may assume that g is non-constant. Consider g(z) =
f(z)
K

, then g(0) = 1/K and g : D → D. If f(z) = 0, then, by the
Schwarz-Pick lemma applied to g and w = 0

1

K
=

∣∣∣∣∣ 1
K
f(0)− 0

1− f(0)/K · 0

∣∣∣∣∣ =

∣∣∣∣∣ g(0)− g(z)

1− g(0)g(w)

∣∣∣∣∣ ≤
∣∣∣∣ 0− z
1− 0 · z

∣∣∣∣ = |z|.

Thus f cannot vanish on 1
K
D. �

Lemma 11.4. Let f ∈ H∞(DN) satisfies ‖f‖∞ ≤ K and f(0) = 1.
Then f 6= 0 on 1

K
DN .

Proof: Fix w = (w1, . . . , wN) ∈ DN , and define |w|∞ =
maxi=1,...,N |wi|. Define g ∈ H∞(D) by g(z) := f( zw

|w|∞ ), then ‖g‖∞ ≤
K. If f(w) = 0, then g(|w|∞) = 0. Thus, by the preceding lemma,
|w|∞ ≥ 1/K. �
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11.3. Reproducing kernel Hilbert spaces

Let H be a Hilbert space of functions on a set X such that eval-
uation at each point of X is continuous. (Note: when we speak of a
Hilbert space of functions on X, we assume that any function that is
identically zero on X is zero in the Hilbert space). Then by the Riesz
representation theorem, for each w ∈ X, there must be some function
kw ∈ H such that

f(w) = 〈f, kw〉.
One can think of kw as a function in its own right, kw(z) say. We call
the function k(z, w) = kw(z) the kernel function for H, and we call kw
the reproducing kernel at w.

Proposition 11.5. Let H be a Hilbert function space on X, and
let {ei}i∈I be any orthonormal basis for H. Then

k(z, w) =
∑
i∈I

ei(w)ei(z). (11.6)

Proof: This is just Parseval’s identity:

k(z, w) = 〈kw, kz〉

=
∑
i∈I

〈kw, ei〉waei, kζ〉

=
∑
i∈I

ei(w)ei(z). �

It follows from (11.6) that k(z, w) = k(w, z).

Proposition 11.7. Let H be a Hilbert space of analytic functions
on a topological space X such that the function κ : X → H given by
κ(w) := kw is continuous. Let {fn}n∈N ⊂ H be a bounded sequence.
Then, the following are equivalent

(1) 〈fn, g〉 → 〈f, g〉 for all g in some set S ⊂ H, whose span is
dense in H,

(2) fn → f weakly in H,
(3) fn → f uniformly on compact subsets of X,
(4) fn → f pointwise in X.

Proof: (1) =⇒ (2) : By linearity, 〈fn, g〉 → 〈f, g〉 for all g ∈
span S. Now choose an arbitrary g ∈ H, fix ε > 0 and find g0 ∈ span S
such that ‖g − g0‖ < ε. Then

lim
n→∞

|〈fn − f, g〉| ≤ lim
n→∞

|〈fn − f, g − g0〉| + lim
n→∞

|〈fn − f, g0〉|
≤ lim

n→∞
‖fn − f‖ · ‖g − g0‖ + 0
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≤ Mε,

where M = supn∈N ‖fn‖. Since ε was arbitrary, we conclude that fn →
f weakly.

(2) =⇒ (3) : Let K ⊂ X be compact, then by continuity of κ,
the set K̃ := {kw; w ∈ K} is also compact. Fix ε > 0 and find a
finite ε-net {kw1 , . . . , kwm} in K̃. Find N ∈ N such that for all n > N
〈fn − f, kwj〉 < ε holds for j = 1, . . . ,m. Then for any w ∈ K and
n > N :

|fn(w)− f(w)| = |〈fn − f, kw〉|
≤ |〈fn − f, kwi〉|+ |〈fn − f, kw − kwi〉|
≤ ε+ ‖fn − f‖ · ‖kw − kwi‖
≤ ε+ 2Mε
= (2M + 1)ε,

for a suitable i (such i exists since {kw1 , . . . , kwm} is an ε-net). Since
ε > 0 was arbitrary, we conclude that fn → f uniformly in K.

(3) =⇒ (4) : Obvious.
(4) =⇒ (1) : Follow immediately, since (4) means that (1) holds

with S = {kw}w∈X �

Corollary 11.8. Let {fn}n∈N be a bounded sequence with H as in
Proposition 11.7. Then there exists a subsequence that satisfies all the
equivalent conditions of Proposition 11.7.

Proof: Since any bounded set in a Hilbert space weakly sequen-
tially compact, there exists a subsequence that converges weakly. By
Proposition 11.7, it satisfies all four conditions. �

11.4. Multiplier Algebras

If H is a Hilbert space of functions on X, we let Mult (H) denote
the multiplier algebra, i.e. the set

Mult (H) = {φ : φf ∈ H ∀ f ∈ H}.
It follows from the closed graph theorem that if φ is in Mult (H), then
the operator Mφ of multiplication by φ is bounded. The adjoint M∗

φ

has all the kernel functions as eigenvectors.

Proposition 11.9. Let H be a Hilbert function space on X, and
let φ be in Mult (H). Then

M∗
φkw = φ(w)kw, ∀ w ∈ X. (11.10)

‖Mφ‖ ≥ sup
X
|φ|. (11.11)
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If the norm on H is an L2-norm on X, then (11.11) becomes an equal-
ity.

Proof: Let f be an arbitrary function in H. Then

〈f,M∗
φkw〉 = 〈φf, kw〉

= φ(w)f(w)

= 〈f, φ(w)kw〉.
This proves (11.10).

As

‖M∗
φ‖ ≥ sup

w∈X
‖M∗

φkw‖/‖kw‖

= sup
w∈X
|φ(w)|,

we get (11.11).
Finally, if the norm on H is the L2(µ)-norm, then the inequality∫

X

|φf |2dµ ≤ ‖φ‖2
∞

∫
X

|f |2dµ

means ‖Mφ‖ ≤ ‖φ‖∞. �

Proposition 11.12. Let H be a Hilbert function space on X, and
assume Mult (H) separates the points of X. Then Mult (H) equals its
commutant in the bounded linear operators on H.

Proof: Suppose T is in the commutant of Mult (H). Then T ∗ has
each kernel function kw as an eigenvector, since Mult (H) separates the
points of X. Therefore

T ∗kw = φ(w)kw,

for some function φ. Therefore T = Mφ, and since T is bounded, this
means φ is a multipler. 2
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[Boh13a] H. Bohr, Über die Bedeutung der Potenzreihen unendlich vieler Variabeln
in der Theorie der Dirichletschen Reihen Σan/n

s, Nachr. Akad. Wiss.
Göttingen math.-Phys. Kl. (1913), 441–488.
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Bohnenblust-Hille inequality for homogeneous polynomials is hypercon-
tractive, Ann. of Math. (2) 174 (2011), no. 1, 485–497.

121



122 BIBLIOGRAPHY

[DS04] Peter Duren and Alexander Schuster, Bergman spaces, Mathematical
Surveys and Monographs, vol. 100, American Mathematical Society,
Providence, RI, 2004.

[Dur70] P. L. Duren, Theory of Hp spaces, Academic Press, New York, 1970.
[EFKMR14] Omar El-Fallah, Karim Kellay, Javad Mashreghi, and Thomas Rans-

ford, A primer on the Dirichlet space, Cambridge Tracts in Mathematics,
vol. 203, Cambridge University Press, Cambridge, 2014.

[Fol99] G.B. Folland, Real analysis: Modern techniques and their applications,
Wiley, New York, 1999.

[Gam01] T.W. Gamelin, Complex analysis, Springer, New York, 2001.
[GH99] J. Gordon and H. Hedenmalm, The composition operators on the space

of Dirichlet series with square summable coefficients, Michigan Math. J.
46 (1999), 313–329.

[Hel69] H. Helson, Compact groups and Dirichlet series, Ark. Mat. 8 (1969),
139–143.

[Hel05] , Dirichlet series, Regent Press, Oakland, 2005.
[HKZ00] Haakan Hedenmalm, Boris Korenblum, and Kehe Zhu, Theory of

Bergman spaces, Graduate Texts in Mathematics, vol. 199, Springer-
Verlag, New York, 2000.

[HLS97] H. Hedenmalm, P. Lindqvist, and K. Seip, A Hilbert space of Dirichlet
series and systems of dilated functions in L2(0, 1), Duke Math. J. 86
(1997), 1–37.

[Kah85] J.-P. Kahane, Some random series of functions, Cambridge University
Press, Cambridge, 1985.

[Koo80] P. Koosis, An introduction to Hp, London Mathematical Society Lecture
Notes, vol. 40, Cambridge University Press, Cambridge, 1980.

[McCa04] J.E. McCarthy, Hilbert spaces of Dirichlet series and their multipliers,
Trans. Amer. Math. Soc. 356 (2004), no. 3.
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Möbius function, µ(n), 6
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