1. Let $A=(1,2,3), B=(2,3,4), C=(5,7,9)$. Find $x, y \in \mathbb{R}$ so that $C=x A+y B$.
2. Fina all real t so that $(1+t, 1-t)$ and $(1-t, 1+t)$ are linearly independent.
3. Let $\mathbf{i}, \mathbf{j}, \mathbf{k}$ and $\mathbf{i}+\mathbf{j}+\mathbf{k}$ be four vectors in \mathbb{R}^{3}. Show that any three are linearly independent, but all 4 are linearly dependent.
4. Find two bases for \mathbb{R}^{3} containing the vectors $(1,1,2)$ and $(1,0,1)$.
5. Let L be the line in \mathbb{R}^{3} through the points $(-3,1,1)$ and $(1,2,7)$. Determine which of the following points are on the line:
a) $(-7,0,5)$
b) $(-7,0,-5)$
c) $(-11,1,11)$
6. Let L be the line in \mathbb{R}^{2} given by

$$
\left\{X \in \mathbb{R}^{2}: X \cdot N=P \cdot N\right\}
$$

where P is on the line and N is a non-zero vector normal to the line. Let Q be a point in \mathbb{R}^{2}. Prove that the distance of Q to L is

$$
\frac{|(P-Q) \cdot N|}{\|N\|} .
$$

