203: Homework 11 Due November 17

1. Let $M=\{P+s A+t B: s, t \in \mathbb{R}\}$, where $P=(1,-1,1), A=(1,2,-1)$ and $B=(2,1,2)$. Determine which of these points lie on M :
(a) $(9,6,4)(b)(8,5,3)$
(c) $(0,-3,0)$.
2. For the plane M from the previous problem, give two different normal vectors, and calculate the distance of M from the origin. Give a Cartesian equation for M.
3. Find two unit vectors orthogonal to A and B, where $A=(1,2,1)$ and $B=(-1,1,2)$.
4. Use cross-products to calculate the area of the triangle with vertices $(1,2,3),(2,3,5)$ and (1, 4, 8).
5. Let $A=2 \mathbf{i}-\mathbf{j}+2 \mathbf{k}$, and let $B=3 \mathbf{i}+4 \mathbf{j}-\mathbf{k}$.
a) Find a vector C so that $A \times C=B$. Is the vector C unique?
b) Find a vector C so that $A \times C=B$ and $A \cdot C=1$. Is the vector C unique?

Figure 1: Picture from Wikipedia by StradivariusTV
6. The torque of a force \mathbf{F} applied at \mathbf{r} to turn around the axis through τ has magnitude equal to the product of $\left\|\mathbf{F}_{\perp}\right\|$ with $\|\mathbf{r}\|$. Express this in terms
of the cross-product. Calculate the torque that a force of 150 Newtons would produce if the angle θ is 70 degrees and $\|r\|$ is 30 cm (the unit of torque is the Newton meter).
7. Find the volume of the parallelepiped determined by the vectors $(6,3,-1),(0,1,2)$ and $(4,-2,4)$.

