1. Assume $\lim _{x \rightarrow a} f(x)$ exists. Prove that if $c \in \mathbb{R}$, then $\lim _{x \rightarrow a} c f(x)=$ $c \lim _{x \rightarrow a} f(x)$.
2. Assume $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} g(x)=M$, and $M \neq 0$. Prove that

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=L / M
$$

3. Assume f is an even function on $[-b, b]$ and that f is integrable. Prove that

$$
\int_{-b}^{b} f(x) d x=2 \int_{0}^{b} f(x) d x
$$

4. Assume g is an odd function on $[-b, b]$ and that g is integrable. Prove that

$$
\int_{-b}^{b} g(x) d x=0
$$

5. We proved in class that the Fibonacci numbers are given by the formula

$$
F_{n}=\frac{(1+\sqrt{5})^{n}-(1-\sqrt{5})^{n}}{2^{n} \sqrt{5}}
$$

Evaluate

$$
\lim _{n \rightarrow \infty} \frac{F_{n+1}}{F_{n}}
$$

6. How large must n be to ensure that $\frac{F_{n+1}}{F_{n}}$ is within 10^{-1} of its limit? Within 10^{-2} ? Within 10^{-k} ?
