203: Homework 7 Due: 13/October

1. Prove the squeeze theorem: Let I be an open interval in \mathbb{R}, and $a \in I$. Assume that

$$
f(x) \leq g(x) \leq h(x) \quad \forall x \in I \backslash\{a\}
$$

and

$$
\begin{equation*}
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x) . \tag{1.1}
\end{equation*}
$$

Prove that $\lim _{x \rightarrow a} g(x)$ exists and equals the limit in (1.1).
2. Suppose $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are convergent sequences. Prove that

$$
\lim _{n \rightarrow \infty} a_{n} b_{n}=\left(\lim _{n \rightarrow \infty} a_{n}\right)\left(\lim _{n \rightarrow \infty} b_{n}\right)
$$

3. Prove or disprove: if the sequence $\left(a_{n}+b_{n}\right)$ converges, then both $\left(a_{n}\right)$ and $\left(b_{n}\right)$ converge.
4. Suppose I is an interval in $\mathbb{R},\left(x_{n}\right)$ is a sequence in I that converges to $c \in I$. Suppose $f: I \rightarrow \mathbb{R}$. Prove that if f is continuous at c, then $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(c)$.
5. Give an example to show that the converse to the assertion in (4.) is not true.
6. Give an example of a continuous bounded function on a closed interval that does not attain its maximum.
