## 203: Homework 8 Due: 20/October

1. Suppose $I$ is an open interval in $\mathbb{R}$, that $f: I \rightarrow \mathbb{R}$, and $c \in I$. Suppose that for every sequence $\left(x_{n}\right)$ in $I$ that converges to $c, \lim _{n \rightarrow \infty} f\left(x_{n}\right)$ exists. Prove that all the limits are equal, and that $\lim _{x \rightarrow c} f(x)$ exists and equals the same number.
2. Prove that

$$
\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}=\frac{1}{2}
$$

3. Prove that the equation

$$
x^{2}=x \sin x+\cos x
$$

has exactly two real solutions.
4. Prove that $|\sin x-\sin y| \leq|x-y|$, for all $x, y \in \mathbb{R}$.
5. A number $c$ is called a zero of multiplicity $m$ for the polynomial $p$ if $p(x)=(x-c)^{m} q(x)$, where $q$ is a polynomial and $q(c) \neq 0$. Suppose $p$ has $r$ zeros in the interval $[a, b]$, counting each zero as often as its multiplicity. Prove that $p^{\prime}$ has at least $r-1$ zeros in $[a, b]$.
6. On HW 4, you did exercise 4.7 in Structure and Proof. Use this to prove the binomial theorem, exercise 4.8.

