203: Homework 9 Due November 3

1. Prove that f(x) = 2x is uniformly continuous on \mathbb{R} , and $g(x) = x^2$ is not.

2. Prove that if I is an interval and $f: I \to \mathbb{R}$ satisfies:

$$\exists M \in \mathbb{R} \text{ such that } |f'(x)| \le M \ \forall \ x \in I, \tag{1.1}$$

then f is uniformly continuous on I.

3. Give an example to show that the condition in (1.1) is not necessary for f to be uniformly continuous.

4. Let a = (1, 1, 1), b = (0, 1, 1), c = (1, 1, 0) be three vectors in ℝ³. Let d = xa + yb + zc.
(i) Determine the components of d.
(ii) If d = 0, prove that x = y = z = 0.
(iii) Find x, y, z so that d = (1, 2, 4).

(iv) Calculate $\mathbf{a} \cdot \mathbf{b}$ and $\mathbf{a} \cdot (\mathbf{b} - \mathbf{c})$.

5. Let $\mathbf{a} = (2, 1, 1, 1)$, $\mathbf{b} = (0, 1, 1, -1)$, $\mathbf{c} = (1, -1/2, -1/2, 3/2)$ be three vectors in \mathbb{R}^4 . Let $\mathbf{d} = x\mathbf{a} + y\mathbf{b} + z\mathbf{c}$. (i) Determine the components of \mathbf{d} . (ii) If $\mathbf{d} = 0$, must x = y = z = 0? (iii) Find x, y, z so that $\mathbf{d} = (6, 1, 1, 5)$. (iv) Calculate $\mathbf{a} \cdot \mathbf{b}$ and $\mathbf{a} \cdot (\mathbf{b} - \mathbf{c})$.

6. Let $\mathbf{a} = (1, 2, 3, 4)$ and $\mathbf{b} = (1, 1, 1, 1)$. Calculate the orthogonal projection of \mathbf{a} along \mathbf{b} , the orthogonal projection of \mathbf{b} along \mathbf{a} , and the angle between \mathbf{a} and \mathbf{b} .

7. Three vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ in \mathbb{R}^5 satisfy

 $\|\mathbf{a}\| = \|\mathbf{c}\| = 5, \quad \|\mathbf{b}\| = 1, \quad \|\mathbf{a} - \mathbf{b} + \mathbf{c}\| = \|\mathbf{a} + \mathbf{b} + \mathbf{c}\|.$

If the angle between **a** and **b** is $\pi/8$, what is the angle between **b** and **c**?