203: Homework 9 Due November 3

1. Prove that $f(x)=2 x$ is uniformly continuous on \mathbb{R}, and $g(x)=x^{2}$ is not.
2. Prove that if I is an interval and $f: I \rightarrow \mathbb{R}$ satisfies:

$$
\begin{equation*}
\exists M \in \mathbb{R} \text { such that }\left|f^{\prime}(x)\right| \leq M \forall x \in I, \tag{1.1}
\end{equation*}
$$

then f is uniformly continuous on I.
3. Give an example to show that the condition in (1.1) is not necessary for f to be uniformly continuous.
4. Let $\mathbf{a}=(1,1,1), \mathbf{b}=(0,1,1), \mathbf{c}=(1,1,0)$ be three vectors in \mathbb{R}^{3}. Let $\mathbf{d}=x \mathbf{a}+y \mathbf{b}+z \mathbf{c}$.
(i) Determine the components of \mathbf{d}.
(ii) If $\mathbf{d}=0$, prove that $x=y=z=0$.
(iii) Find x, y, z so that $\mathbf{d}=(1,2,4)$.
(iv) Calculate $\mathbf{a} \cdot \mathbf{b}$ and $\mathbf{a} \cdot(\mathbf{b}-\mathbf{c})$.
5. Let $\mathbf{a}=(2,1,1,1), \mathbf{b}=(0,1,1,-1), \mathbf{c}=(1,-1 / 2,-1 / 2,3 / 2)$ be three vectors in \mathbb{R}^{4}. Let $\mathbf{d}=x \mathbf{a}+y \mathbf{b}+z \mathbf{c}$.
(i) Determine the components of \mathbf{d}.
(ii) If $\mathbf{d}=0$, must $x=y=z=0$?
(iii) Find x, y, z so that $\mathbf{d}=(6,1,1,5)$.
(iv) Calculate $\mathbf{a} \cdot \mathbf{b}$ and $\mathbf{a} \cdot(\mathbf{b}-\mathbf{c})$.
6. Let $\mathbf{a}=(1,2,3,4)$ and $\mathbf{b}=(1,1,1,1)$. Calculate the orthogonal projection of \mathbf{a} along \mathbf{b}, the orthogonal projection of \mathbf{b} along \mathbf{a}, and the angle between \mathbf{a} and \mathbf{b}.
7. Three vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ in \mathbb{R}^{5} satisfy

$$
\|\mathbf{a}\|=\|\mathbf{c}\|=5, \quad\|\mathbf{b}\|=1, \quad\|\mathbf{a}-\mathbf{b}+\mathbf{c}\|=\|\mathbf{a}+\mathbf{b}+\mathbf{c}\| .
$$

If the angle between \mathbf{a} and \mathbf{b} is $\pi / 8$, what is the angle between \mathbf{b} and \mathbf{c} ?

