1. Evaluate the double integral $\iint_{R} x^{2} y(x-y) d x d y$, where $R=[0,2] \times$ $[0,1]$.
2. Evaluate the double integral of $x^{2} y(x-y)$ over each of the two triangles obtained by bisecting R from Problem (1) by the diagonal from $(0,0)$ to $(2,1)$.
3. Evaluate $\iint_{D} x^{2} y^{2} d x d y$, where R is the bounded region in the first quadrant lying between the hyperbolas $x y=1$ and $x y=2$ and the lines $y=2 x$ and $y=4 x$.
4. A pyramid is bounded by the three coordinate planes and the plane $x+2 y+4 z=7$. Find its volume.
5. Using Green's theorem, calculate the work done by the force $F(x, y)=$ $\left(x^{2}-y^{2}\right) \mathbf{i}+2 x y \mathbf{j}$ in moving a particle in the counterclockwise direction around the square with corners $(0,0),(a, 0),(a, a),(0, a)$. (The work is the line integral of the force).
6. Use Green's theorem to calculate the integrals $\int_{C} y^{2} d x+2 x d y$, where C is:
(a) The square with vertices $(\pm 1, \pm 1)$.
(b) The circle of radius 1 centered at the origin.
(c) The positively oriented boundary of the annulus $\left\{(x, y): 1<x^{2}+y^{2}<4\right\}$.
