1. Evaluate $\iint_{R} \cos \left(x^{2}+y^{2}\right) d x d y$, where R is the region above the x-axis and within the circle $x^{2}+y^{2}=9$.
2. Find the volume of the solid inside the cylinder $x^{2}+y^{2}=4$ and the ellispoid $4 x^{2}+4 y^{2}+z^{2}=64$.
3. A cylindrical drill with radius r_{1} is used to bore a hole through the center of a sphere of radius r_{2}.
(a) Find the volume of the ring-shaped solid that remains.
(b) Express the volume in part a in terms of the height of the ring.
4. Calculate $\iint_{R} \frac{1}{x+y} d x d y$, where R is the region bounded by $x=0, y=$ $0, x+y=1, x+y=4$, using the change of variable $T(u, v)=(u-u v, u v)$.
5. Find the center of mass of the region D between $y=x^{2}$ and $y=x$ if the density is $\rho(x, y)=x+y$.

Note: The mass is $m=\iint_{D} \rho(x, y)$. The center of mass is then (\bar{x}, \bar{y}), where

$$
\begin{aligned}
\bar{x} & =\frac{1}{m} \iint_{D} x \rho(x, y) \\
\bar{y} & =\frac{1}{m} \iint_{D} y \rho(x, y) .
\end{aligned}
$$

