1. Evaluate $\iiint_{D} z d V$ where D is bounded by the cylinder $y^{2}+z^{2}=9$ and the planes $x=0, y=3 x, z=0$ in the first octant.
2. Evaluate $\iiint_{D} y z \cos \left(x^{5}\right) d V$, where

$$
D=\{(x, y, z): 0 \leq x \leq 1,0 \leq y \leq x, x \leq z \leq 2 x\}
$$

3. Find the mass and center of mass of the solid E bounded by the paraboloid $z=4 x^{2}+y^{2}$ and the plane $z=2$, assuming it has constant density.
4. Find the volume of the solid that lies within the sphere $x^{2}+y^{2}+z^{2}=4$, above the $x y$-plane, and below the cone $z=\sqrt{x^{2}+y^{2}}$.
5. Find the volume of the regular tetrahedron with side 1.
6. The stem of a mushroom is a cylinder of diameter 1 and height 2 , and its cap is a hemisphere of radius R. If it is constant density, and its center of mass is in the plane where the stem joins the cap, find R.
7. For $a>0$, let $O_{n}(a)$ be the set in \mathbb{R}^{n} given by

$$
O_{n}(a)=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right):\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{n}\right| \leq a\right\} .
$$

Let $V_{n}(a)$ be the volume of $O_{n}(a)$.
(i) Prove that $V_{n}(a)=a^{n} V_{n}(1)$.
(ii) Prove that

$$
V_{n}(1)=V_{n-1}(1) \int_{-1}^{1}(1-|x|)^{n-1} d x
$$

(iii) Deduce that $V_{n}(a)=\frac{2^{n} a^{n}}{n!}$.

