1. Evaluate $\iint_{\Sigma} x y d S$, where Σ is the triangular region with vertices $(1,0,0),(0,2,0)$, and $(0,0,2)$.
2. Evaluate $\iint_{\Sigma} y d S$, where Σ is the surface $z=\frac{2}{3}\left(x^{3 / 2}+y^{3 / 2}\right)$, and $0 \leq x \leq 1,0 \leq y \leq 1$.
3. Evaluate $\iint_{\Sigma} x^{2}+y^{2}+z^{2} d S$, where Σ is the part of the cylinder $x^{2}+y^{2}=9$ between the plane $z=0$ and $z=2$, including the top and bottom faces.
4. Evaluate $\iint_{\Sigma} \vec{F} \cdot d \vec{S}$, where \vec{F} is the vector field $x \mathbf{i}+y \mathbf{j}+z^{4} \mathbf{k}$ and Σ is the part of the cone $z=\sqrt{x^{2}+y^{2}}$, beneath the plane $z=1$ with downward orientation.
5. Evaluate $\iint_{\Sigma} \vec{F} \cdot d \vec{S}$, where \vec{F} is the vector field $x z e^{y} \mathbf{i}+-x z e^{y} \mathbf{j}+z \mathbf{k}$ and Σ is the part of the plane $x+y+z=1$ in the first octant with downward orientation.
6. A fluid has density $900 \mathrm{~kg} / \mathrm{m}^{3}$ and flows with velocity $\mathbf{v}=z \mathbf{i}+y^{2} \mathbf{j}+x^{2} \mathbf{k}$, where distance is measured in meters and time in seconds. Find the rate of flow outward through the cylinder $x^{2}+y^{2}=4,0 \leq z \leq 1$.
7. Use Gauss's law ($Q=\varepsilon_{0} \iint_{\Sigma} \vec{E} \cdot d \vec{S}$) to calculate the charge enclosed by the cube with vertices $(\pm 1, \pm 1, \pm 1)$ if \vec{E} is $x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$.
