204: Homework 14 Not to be turned in. One question will be on final

1. Use the Divergence theorem to calculate the flux of \mathbf{F} across the surface Σ, where $F(x, y, z)=4 x^{3} z \mathbf{i}+4 y^{3} z \mathbf{j}+3 z^{4} \mathbf{k}$ and Σ is the sphere with radius R centered at the origin.
2. Use the Divergence theorem to calculate the flux of \mathbf{F} across the surface Σ, where $F(x, y, z)=z^{2} x \mathbf{i}+\left(\frac{1}{3} y^{3}+\sin z\right) \mathbf{j}+\left(x^{2} z+y^{2}\right) \mathbf{k}$, and Σ is the top half of the sphere $x^{2}+y^{2}+z^{2}=1$. (Note: Σ is not a closed surface, so you must adjoin a disk to it).
3. Use Stokes's theorem to evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where $F(x, y, z)=e^{-x} \mathbf{i}+$ $e^{x} \mathbf{j}+e^{z} \mathbf{k}$, and C is the boundary of the plane $2 x+y+2 z=2$ in the first octant.
4. Verify that Stokes's theorem is true by calculating both sides for the vector field $\mathbf{F}(x, y, z)=x \mathbf{i}+y \mathbf{j}+x y z \mathbf{k}$, and Σ is the part of the plane $2 x+y+z=2$ in the first octant, oriented upwards.
