1. Consider the function $f(x, y)=x^{3}+e^{3 y}-3 x e^{y}$.
(a) Show that f has exactly one critical point a.
(b) Show that a is a local minimum point.
(c) Is a a global minimum point?
2. The materials for the sides of a rectangular box cost twice as much as the material for the top and bottom. Find the relative dimensions of the box with greatest volume that can be constructed for a given cost.
3. (a) Find the minimum value of $f(x, y)=x^{2}+y^{2}$ on the curve $x+y=2$. Why is there no maximum?
(b) Find the maximum value of $g(x, y)=x+y$ on the curve $x^{2}+y^{2}=2$. Is there a minimum?
(c) How are parts (a) and (b) related?
4. A wire has the shape of the circle $x^{2}+y^{2}-2 y=0$. Its temperature is given by $T(x, y)=2 x^{2}+3 y$. Find the maximum and minimum temperature of the wire.
5. The temperature is given by $f(x, y, z)=3 x y+z^{3}-3 z$. Prove that there are hottest and coldest points on the sphere $x^{2}+y^{2}+z^{2}=3$ and find them.
6. Suppose $x_{1}, x_{2}, \ldots, x_{n}$ are positive numbers. Prove the arithmeticgeometric inequality:

$$
\sqrt[n]{x_{1} x_{2} \cdots x_{n}} \leq \frac{x_{1}+x_{2}+\cdots+x_{n}}{n}
$$

