1. Calculate the line integral $\int F \cdot d \alpha$ along the given path:
(i) $F(x, y)=\left(x^{2}-2 x y\right) \mathbf{i}+\left(y^{2}-2 x y\right) \mathbf{j}$, along the parabola $y=x^{2}$ between $(-1,1)$ and $(1,1)$.
(ii) $F(x, y, z)=x \mathbf{i}-2 z \mathbf{j}+y \mathbf{k}$, and $\alpha(t)=2 t \mathbf{i}+4 t \mathbf{j}-t^{2} \mathbf{k}$, for $0 \leq t \leq 1$.
2. Calculate the work done by the force $F(x, y)=\left(x^{2}-y^{2}\right) \mathbf{i}+2 x y \mathbf{j}$ in moving a particle in the counterclockwise direction around the square with corners $(0,0),(a, 0),(a, a),(0, a)$. (The work is the line integral of the force).
3. Prove that the following two fields are not conservative by evaluating appropriate partial derivatives. Then for each one, find a closed path C such that the line integral around C is not 0 .
(i) $F(x, y)=y \mathbf{i}-x \mathbf{j}$.
(ii) $F(x, y)=y \mathbf{i}+(x y-x) \mathbf{j}$.
4. For each of the following vector fields, determine whether they are conservative. If they are, find a potential function.
(i) $F(x, y)=x \mathbf{i}+y \mathbf{j}$.
(ii) $F(x, y)=3 x^{2} y \mathbf{i}+x^{3} \mathbf{j}$.
(iii) $F(x, y)=\left(2 x e^{y}+y\right) \mathbf{i}+\left(x^{2} e^{y}+x-2 y\right) \mathbf{j}$.
(iv) $F(x, y, z)=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$.
(v) $F(x, y, z)=(x+z) \mathbf{i}-(y+z) \mathbf{j}+(x-y) \mathbf{k}$.
5. A fluid flows in the $x y$-plane, each particle moving directly away from the origin. If a particle is a distance r from the origin, its speed is $a r^{b}$, where a and b are constants.
(i) Determine those values of a and b for which the velocity vector field is the gradient of a scalar field on $\mathbb{R}^{2} \backslash\{0\}$.
(ii) When the velocity field is a gradient, find a potential function. (The case $b=-1$ should be treated separately).
