1. (i) Consider the 1-dimensional system $\dot{x}=f(x)$ where f looks like the picture. What are the fixed points, and which ones are attracting, and which ones are repelling?
(ii) If f is changed to $f(x)+\varepsilon$, where ε is a small real number (which may be positive or negative) how does the answer change?
2. (i) Sketch the trajectories of a 2-dimensional linear system whose fixed point is a center.
(ii) What could happen qualitatively if there were higher order non-linear terms?
(iii) If you knew that the system was conservative, how would that change the answer to (ii)?
3. (i) Consider the 2-dimensional system

$$
\begin{aligned}
\dot{x} & =x+2 y \\
\dot{y} & =3 x+4 y
\end{aligned}
$$

What is the nature of its fixed point?
(ii) What could happen qualitatively to the fixed point at 0 if one looked at the system

$$
\begin{aligned}
\dot{x} & =x+2 y+x y \\
\dot{y} & =3 x+4 y-y^{2}
\end{aligned}
$$

4. (i) What is the index of a closed curve with respect to a vector field $\vec{F}(x, y)$?
(ii) What is the index of the vector field

$$
\vec{F}(x, y)=\binom{x^{2}}{x-y}
$$

at $(0,0)$?
5. Consider the damped harmonic oscillator

$$
\ddot{x}+b \dot{x}+x=0
$$

where $b \geq 0$. Analyze the system and describe it qualitatively as b ranges from 0 to $+\infty$.

