350: Homework 3 Due: 15/February

1. Do 5.1.2
2. Do 5.1.9.
3. Do 5.1.10
4. Do 5.2.10
5. Do 5.3.4

Computer Homework

C 1. Plot the direction field and some sample trajectories for the equation

$$
\begin{aligned}
& \dot{x}=-x+x^{3}+2 y \\
& \dot{y}=-3 y .
\end{aligned}
$$

Here is a (not very gainly) program that works in Octave. Change the trajectories' starting points. I am using \wedge for the power symbol (above the number 6 on the keyboard); I don't know how to put it elegantly in Latex). Make sure the single and double quotes are correctly typed in your program $\%$ precedes a comment
$[\mathrm{x} 1, \mathrm{x} 2]=\operatorname{meshgrid}(-1.5: 0.05: 1.5,-0.5: .05: 0.5) ;$
x 1 dot $=-\mathrm{x} 1+\mathrm{x} 1 . \wedge 3+2^{*} \mathrm{x} 2$;
x 2 dot $=-3^{*} \mathrm{x} 2$;
quiver(x1,x2,x1dot, x2dot) \% this plots the direction field
hold on; \%This keeps the quiver graph on the plot
$\% \mathrm{x} 1=[-.6, .4]$;
$\% \mathrm{x}=\operatorname{lsode}($ " f ", $\mathrm{x} 1, \mathrm{t}$);
\%plot($x(:, 1), x(:, 2))$ \%This would plot for one starting value; could repeat. \%Instead we will do 4 points at once.
$\mathrm{t}=$ linspace $(0,2,20)^{\prime}$; \%Time runs from 0 to 2 in 20 equally spaced increments
$\mathrm{y}=[-.15,0.2 ;-.6,0.4 ; 0.7,-.7 ; .8, .01] ;$
function xdot $=f(x, t)$
$\mathrm{xdot}(1)=-\mathrm{x}(1)+\mathrm{x}(1) \wedge 3+2^{*} \mathrm{x}(2)$;
$x \operatorname{dot}(2)=-3^{*} \mathrm{x}(2)$;
endfunction
for $\mathrm{i}=1: 4$
$\mathrm{x}=\operatorname{lsode}(" \mathrm{f} ",[\mathrm{y}(\mathrm{i}, 1), \mathrm{y}(\mathrm{i}, 2)], \mathrm{t})$;
$\operatorname{plot}(x(:, 1), x(:, 2))$
endfor
C 2. Do the same for the pendulum equation

$$
\ddot{\theta}=-\sin (\theta),
$$

thought of as a two-dimensional first order system in θ and $v=\dot{\theta}$.

