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Asymptotic Müntz–Szász theorems

by

Jim Agler (La Jolla, CA) and John E. McCarthy (St. Louis, MO)

Abstract. We define a monomial space to be a subspace of L2([0, 1]) that can be ap-
proximated by spaces that are spanned by monomial functions. We describe the structure
of monomial spaces.

1. Introduction. What sorts of subspaces in L2([0, 1]) can be limits of
spans of monomials? Specifically, let

S = {s ∈ C | Re s > −1/2},
so that s ∈ S if and only if xs ∈ L2([0, 1]). For S a finite subset of S we let
M(S) denote the span in L2([0, 1]) of the monomials whose exponents lie
in S, i.e.,

M(S) =
{∑
s∈S

a(s)xs
∣∣∣ a : S → C

}
.

We refer to sets in L2([0, 1]) that have the form M(S) for some finite subset
S of S as finite monomial spaces. We are interested in what the limits of such
spaces are.

Definition 1.1. If M is a subspace of a Hilbert space H and {Mn} is
a sequence of closed subspaces, we say that {Mn} tends to M and write
Mn → M as n→ ∞ if

M =
{
f ∈ H

∣∣∣ lim
n→∞

dist(f,Mn) = 0
}
.

There are alternative ways to frame this definition; see Proposition 4.1.

Definition 1.2. We say that a subspace M of L2([0, 1]) is a monomial
space if there exists a sequence {Mn} of finite monomial spaces such that
Mn → M.
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The goal of this paper is to study monomial spaces, which have a rich
structure and are intimately related to the Müntz-Szasz theorem and gener-
alizations thereof.

1.1. Monotone monomial spaces. In this subsection we recall several
classical results that can be interpreted as facts about monomial spaces. In
each example we consider there is a limit Mn → M of finite monomial
spaces that is monotone, i.e.,

Mi ⊆ Mj whenever i ≤ j.

For a detailed account of the results in this section, see [4] and [7].

Example 1.3 (The Weierstrass approximation theorem). Let Sn = {0, 1,
. . . , n}. The Weierstrass theorem, which implies that the polynomials are
dense in L2([0, 1]), also implies that

M(Sn) → L2([0, 1]).

In particular, L2([0, 1]) is a monomial space.

Example 1.4 (Classical Müntz–Szász theorem [24, 28]). Fix a strictly
increasing sequence of nonnegative integers s0, s1, s2, . . . , and let

Sn = {s0, s1, . . . , sn}.
Then there exists a space M such that

M(Sn) → M.

Furthermore,

M = L2([0, 1]) if and only if
∞∑
k=1

1

sk
= ∞.

Example 1.5 (Szász’s theorem, real case (also known as full Müntz–
Szász theorem in L2([0, 1])) [29]). Fix a sequence of distinct real numbers
s0, s1, s2, . . . in S and let again Sn = {s0, s1, . . . , sn}. Then there exists a
space M such that M(Sn) → M. Furthermore,

M = L2([0, 1]) if and only if
∞∑
k=0

2sk + 1

(2sk + 1)2 + 1
= ∞.

Example 1.6 (Szász’s theorem, complex case). Any of the proofs that
the authors know of the previous example, including Szász’s original proof,
can be adapted to show that if s0, s1, s2, . . . is a sequence of distinct points
in S and, as previously, Sn = {s0, s1, . . . , sn}, then there exists a space M
such that M(Sn) → M, and where

M = L2([0, 1]) if and only if
∞∑
k=1

2Re sk + 1

|sk + 1|2
= ∞.
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What happens in the above examples when M ≠ L2([0, 1])?

Example 1.7 (The Clarkson–Erdős theorem). With the setup of Ex-
ample 1.4, assume that M ̸= L2([0, 1]). Then Clarkson and Erdős proved
in [12] that the elements of M extend to be analytic on D! Furthermore, if
f ∈ M, then f has a power series representation of the form

f(z) =
∞∑
k=0

akz
sk , z ∈ D.

This result was generalized to arbitrary real powers in (−1/2,∞) by Erdélyi
and Johnson [16], who showed that if M ≠ L2([0, 1]), then every f in M is
analytic in D \ (−1, 0].

In honor of this remarkable theorem, we introduce the following defini-
tion.

Definition 1.8. We say that M is a Clarkson–Erdős space if there exist
a sequence {s0, s1, . . .} in S of distinct points such that

M({s0, s1, . . . , sn}) → M
where M ≠ L2([0, 1]).

We want to allow for multiplicities. If an entry s is repeated in a se-
quence, this corresponds to multiplicity in the following way. The first oc-
currence of s in Sn gives the function xs in Mn. The second occurrence
gives ∂

∂sx
s = xs log x. If s occurs k times, then Mn contains the functions

xs, xs log x, . . . , xs(log x)k−1. This leads to the following generalization of a
Clarkson–Erdős space.

Definition 1.9. We say that M is an Erdélyi–Johnson space if there
exist a sequence {s0, s1, . . .} in S, with multiplicities allowed, such that

M({s0, s1, . . . , sn}) → M
where M ≠ L2([0, 1]).

1.2. A nonmonotone monomial space. In the study of monomial
spaces it is natural to consider the class of monomial operators, i.e., the
class of bounded operators T acting on L2([0, 1]) that take monomials to
monomials, i.e.,

(1.1) ∀s∈S ∃τ∈S ∃c∈C Txs = cxτ .

In [2] the authors studied the special case where it is assumed that there
exists a fixed number m such that in (1.1), τ can be chosen to equal s+m
for all s. We call these flat monomial operators. In the course of proving
that flat monomial operators leave L2([a, 1]) invariant for each a ∈ [0, 1], the
authors discovered the following example.
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Example 1.10. Fix ρ ∈ [0, 1] and choose an increasing sequence of inte-
gers N1, N2, . . . such that

lim
n→∞

n

n+Nn
=

√
ρ.

If
Sn = {n+ 1, n+ 2, . . . , n+Nn},

then
M(Sn) → L2([ρ, 1]).

In particular, L2([ρ, 1]) is a monomial space for each ρ ∈ [0, 1], where here
and afterwards we identify L2([ρ, 1]) with the subspace of L2([0, 1]) consisting
of functions that vanish a.e. on [0, ρ].

1.3. Characterization of monomial spaces. The Hardy operator H :
L2([0, 1]) → L2([0, 1]) is defined by

(1.2) Hf(x) =
1

x

x�

0

f(t) dt.

This was introduced by Hardy [21], who proved it was bounded. As Hxs =
1
s+1x

s for all s ∈ S, the Hardy operator leaves invariant every monomial
space. The converse is true.

Theorem 1.11. A closed subspace of L2([0, 1]) is a monomial space if
and only if it is invariant for H.

A proof of 1.11 that uses real analysis techniques is given in [1].

Corollary 1.12. A bounded operator T on L2([0, 1]) is a monomial
operator if and only if for every M ∈ Lat(H), the space TM is in Lat(H).

1.4. A decomposition theorem

Definition 1.13. We say a space M in L2([0, 1]) is a singular space if
M is a monomial space that does not contain any Clarkson–Erdős space.

Theorem 1.14. Every monomial space M has a unique decomposition,

M = M0 +M1,

where M0 is an Erdélyi–Johnson space and M1 is a singular space.

1.5. Atomic spaces. Unitary monomial operators can be characterized
using a theorem of Bourdon and Narayan [8]. Their description is equivalent
to the following reformulation from [3].

Theorem 1.15. The operator

T : xs 7→ c(s)xτ(s)
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is a unitary map from L2([0, 1]) to L2([0, 1]) if and only if τ is a holomorphic
automorphism of S and c is given by

c(s) = c0
1 + τ(0) + τ(s)

1 + s
,

where c0 is a constant satisfying

|c0| =
1√

1 + 2Re τ(0)
.

Definition 1.16. We say a space M in L2([0, 1]) is atomic if there exist
ρ ∈ (0, 1) and a unitary monomial operator T such that M = TL2([ρ, 1]).

We can describe all atomic spaces in the following way.

Theorem 1.17. The functions

(1.3) en(x) =

n∑
k=0

(
n

k

)
(lnx)k

k!
, n ≥ 0,

form an orthonormal basis for L2([0, 1]). Furthermore, the operator J defined
on L2([0, 1]) by requiring

J(en) =

{
en if n is even,
−en if n is odd,

is a unitary monomial operator, corresponding to the choice

(1.4) τ(s) =
−s

1 + 2s
, c(s) =

1

1 + 2s

in Theorem 1.15.

The polynomials

pn(t) =
n∑
k=0

(
n

k

)
(t)k

k!
, n ≥ 0,

are the Laguerre polynomials. They are the orthogonal polynomials on [0,∞)
for the measure e−tdt. Under the change of variables x = e−t they become
the functions en in (1.3). Their connection to the Hardy operator was shown
in [10, 23].

If c is real, the multiplication operator Mxic is also a unitary monomial
operator. These two operators can be used to build the general atomic space:

(1) For any w > 0, define

A1,w := L2([e−2w, 1]).

(2) Define
A−1,w := JA1,w
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(3) For any τ ∈ T \ {1}, define

Aτ,w :=MxicA−1,℘, where 2ic =
τ + 1

τ − 1
, ℘ = (1 + 4c2)w.

(The reason for the strange scaling is to simplify the formulas in Section 5.)
Atomic spaces are all of the form Aτ,w.

Theorem 1.18. Every atomic space is equal to Aτ,w for exactly one pair
(τ, w) ∈ T× (0,∞).

1.6. The structure of singular spaces. We say M is finitely atomic
if M is a finite sum of atomic spaces. If

µ =
n∑
k=1

wkδτk

is a finitely atomic measure on T, with distinct atoms τk, we define a finitely
atomic space in L2([0, 1]) by the formula

M(µ) =
n∑
k=1

Aτk,wk

Theorem 1.19. The assignment µ 7→ M(µ) extends by weak-∗ sequential
continuity to a map from the positive singular Borel measures on T into
closed subspaces of L2([0, 1]). When extended,

µn → µ weak-∗ =⇒ M(µn) → M(µ).

1.7. The main idea. It was proved by Brown, Halmos and Shields [10]
that the Hardy operator is unitarily equivalent to 1 − S∗, where S is the
unilateral shift, via a unitary U : L2([0, 1]) → H2 which we call the Sarason
transform, described in Section 2. It follows that the invariant subspaces of
H2 can be described by Beurling’s theorem [6] in terms of model spaces,
the invariant subspaces for the backward shift described for example in [19].
However, all the theorems above have been stated in terms that are intrinsic
to L2([0, 1]). We believe that finding proofs that are also intrinsic to L2([0, 1])
will illuminate this space with a new light. So far, the authors have only
succeeded in doing this for some of these results.

Problem 1.20. Find real analysis proofs to Theorems 1.14 and 1.19.

2. The Sarason transform

2.1. The definition. We let H2 denote the classical Hardy space of
holomorphic functions on D with square summable power series coefficients
at the origin. We let kα denote the Szegö kernel function for H2, i.e.,

kα(z) =
1

1− ᾱz
, z ∈ D.
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As the monomials are linearly independent in L2([0, 1]), there is a well-
defined map L, defined on polynomials in L2([0, 1]) into H2 by the formula

L
( N∑
n=0

anx
n
)
=

N∑
n=0

an
1

n+ 1
k n

n+1

Since
⟨L(xi), L(xj)⟩H2 = ⟨xi, xj⟩L2([0,1])

for all nonnegative integers i and j, it follows that

⟨L(p), L(q)⟩H2 = ⟨p, q⟩L2([0,1])

for all polynomials p and q, i.e., L is isometric. Hence, as the polynomials
are dense in L2([0, 1]), L has a unique extension to an isometry U defined
on all of L2([0, 1]). Finally, since{

n

n+ 1

∣∣∣∣ n is a nonnegative integer
}

is a set of uniqueness for H2, it follows that the range of L is dense in H2,
which implies that U is a unitary transformation from L2([0, 1]) onto H2.

Definition 2.1. We let U denote the unique unitary transformation
from L2([0, 1]) onto H2 that satisfies

U(xn) =
1

n+ 1
k n

n+1

for all nonnegative integers n.

We call U the Sarason transform, as it is similar to the transform from
L2([0,∞)) onto H2 used in [27].

2.2. Moments in L2([0, 1]) and interpolation in H2. As the mono-
mials are dense in L2([0, 1]), a function f ∈ L2([0, 1]) is uniquely determined
by its moment sequence

1�

0

xnf(x) dx, n = 0, 1, . . . .

Similarly, as the sequence
{
1 − 1

n+1

∣∣ n = 0, 1, . . .
}

is a set of uniqueness
for H2, a function h ∈ H2 is the unique solution g in H2 to the interpolation
problem

g

(
n

n+ 1

)
= h

(
n

n+ 1

)
, n = 0, 1, . . . .

The following proposition is immediate from Definition 2.1.
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Proposition 2.2. Fix a sequence of complex numbers w0, w1, w2, . . . .
If f in L2([0, 1]) solves the moment problem

1�

0

xnf(x) dx = wn, n = 0, 1, . . . ,

then Uf is in H2 and solves the interpolation problem

Uf

(
n

n+ 1

)
= (n+ 1)wn, n = 0, 1, . . . .

If h ∈ H2 solves the interpolation problem

h

(
n

n+ 1

)
= wn, n = 0, 1, . . . ,

then U∗h is in L2([0, 1]) and solves the moment problem
1�

0

xnU∗h(x) dx =
1

n+ 1
wn, n = 0, 1, . . . .

The correspondence between moments and interpolation described in the
preceding proposition allows us to easily calculate the Sarason transform of
many common functions. We illustrate this with the following two lemmas.

Lemma 2.3. If α ∈ D, then

(2.1) U∗(kα)(x) =
1

1− ᾱ
x

ᾱ
1−ᾱ , x ∈ [0, 1].

If Reβ > −1
2 , then

U(xβ) =
1

β + 1
k β̄

β̄+1

.

Proof. We note that the two assertions of the lemma are equivalent.
Therefore it suffices to prove (2.1). Since the left and right hand sides of
(2.1) are in L2([0, 1]), it suffices to show that for each n ≥ 0,

⟨xn, U∗kα⟩L2([0,1]) =

〈
xn,

1

1− ᾱ
x

ᾱ
1−ᾱ

〉
L2([0,1])

.

But〈
xn,

1

1− ᾱ
x

ᾱ
1−ᾱ

〉
L2([0,1])

=
1

1− α

〈
xn, x

ᾱ
1−ᾱ

〉
L2([0,1])

=
1

1− α

1�

0

xnx
ᾱ

1−ᾱ dx

=
1

1− α

1

n+ α
1−α + 1

=
1

n+ 1

1

1− n
n+1α

=
1

n+ 1
k n

n+1
(α) = (Uxn)(α) = ⟨Uxn, kα⟩H2

= ⟨xn, U∗kα⟩L2([0,1]).
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For S a measurable set in [0, 1] let χS denote the characteristic function
of S.

Lemma 2.4. If s ∈ [0, 1], then

(2.2) Uχ[0,s](z) =
√
s e

1
2
ln s 1+z

1−z .

Proof. We first observe that

sn+1

n+ 1
=

s�

0

xn dx = ⟨χ[0,s], x
n⟩L2([0,1]) = ⟨Uχ[0,s], Ux

n⟩H2

=

〈
Uχ[0,s],

1

n+ 1
k n

n+1

〉
H2

=
1

n+ 1
Uχ[0,s]

(
n

n+ 1

)
,

so that

Uχ[0,s]

(
n

n+ 1

)
= sn+1

for all n ≥ 0. On the other hand, if for w > 0 we let Ew denote the singular
inner function defined by

Ew(z) = e−w
1+z
1−z = ewe−

2w
1−z ,

then

Ew

(
n

n+ 1

)
= ewe−2w(n+1) = ew(e−2w)n+1

for all n ≥ 0. Hence, if we choose w = −1
2 ln s, then

Uχ[0,s]

(
n

n+ 1

)
= e−wEw

(
n

n+ 1

)
for all n ≥ 0. Since

{
1− 1

n+1

∣∣ n ≥ 0
}

is a set of uniqueness for H2, it follows
that

Uχ[0,s](z) = e−wEw(z)

for all z ∈ D, which implies (2.2).

2.3. A formula for the Sarason transform

Proposition 2.5. If f ∈ L2([0, 1]), then

Uf(z) =
1

1− z

1�

0

f(x)x
z

1−z dx for all z ∈ D.
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Proof.

Uf(z) = ⟨Uf, kz⟩H2 = ⟨f, U∗kz⟩L2([0,1])

=

〈
f,

1

1− z̄
x

z̄
1−z̄

〉
L2([0,1])

(Lemma 2.3)

=
1

1− z

1�

0

f(x)x
z

1−z dx.

To obtain a nonrigorous but highly interesting proof of the proposition,
let us define the Sarason transform S{µ}, of a measure µ on [0, 1], to be the
holomorphic function

S{µ}(z) = 1

1− z

�
x

z
1−z dµ(x), |z| < 1.

Note that
S(χ[0,s]) =

√
s eln

√
s 1+z

1−z = U(χ[0,s]).

We have
S{δs} =

1

1− z
s

1
1−z

−1 =
1

1− z
s

z
1−z .

So formally we get

Uf = S
( 1�

0

f(x)δx dx
)
=

1�

0

f(x)S(δx) dx =

1�

0

f(x)
1

1− z
x

z
1−z dx,

the formula in Proposition 2.5.

2.4. Transforms of H, V and X. The Hardy operator H was defined
by (1.2). Let X denote multiplication by x on L2([0, 1]), and define the
Volterra operator V : L2([0, 1]) → L2([0, 1]) by V = XH, so

V f(x) =

x�

0

f(t) dt.

All three of these are monomial operators, and have simple descriptions in
terms of monomials:

H : xn 7→ 1

n+ 1
xn, X : xn 7→ xn+1, V : xn 7→ 1

n+ 1
xn+1.

If T is a bounded operator on L2([0, 1]), let us write T̂ = UTU∗ for the
unitarily equivalent operator on H2. Monomial operators then become oper-
ators that map kernel functions to multiples of other kernel functions, which
are adjoints of weighted composition operators. For more about weighted
composition operators, see e.g. [5, 8, 11, 13, 14, 17, 22].

We shall letMg denote the operator of multiplication by g, and Cβ denote
composition with β. It was observed in [20] that it is possible for the product
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MgCβ to be bounded even when Mg is not. The following theorem is proved
in [3].

Theorem 2.6. The operator T : L2([0, 1]) → L2([0, 1]) is a monomial
operator if and only if T̂ ∗ : H2 → H2 is a bounded operator of the form
MgCβ for some holomorphic β : D → D and some g ∈ H2.

Let γ(z) = 1
2−z . This maps D to D, and maps n

n+1 to n+1
n+2 . Using

Lemma 2.3 and the preceding formulas, it is easy to verify the following.
We shall let S denote the unilateral shift, the operator of multiplication by
z on H2.

Proposition 2.7. We have

Ĥ = 1− S∗, X̂ = S∗C∗
γ , V̂ = (1− S∗)C∗

γ .

The fact that 1−H is unitarily equivalent to a backward shift operator
was first proved in [10], and a proof similar to ours is in [23]. In [18] Fricain
and Lefèvre study other properties that can be ported between L2([0, 1]) and
the Hardy space via the Sarason transform (they actually look at the Hardy
space of the right half-plane).

2.5. The Sarason transform and Lat(V ). The invariant subspaces of
the Volterra operator were described by Brodskĭı [9] and Donoghue [15].

Theorem 2.8. The space M ⊆ L2([0, 1]) is a closed invariant subspace
for V if and only if M = L2([ρ, 1]) for some ρ ∈ [0, 1].

How do these spaces transform under the Sarason transform?
For s ∈ (0, 1] let Φs be the singular inner function defined by

Φs(z) = e
1
2 ln s 1+z

1−z , z ∈ D.
For s ∈ [0, 1], define orthogonal projections P±

s on L2([0, 1]) by the formulas
P−
s f = χ[0,s]f and P+

s f = χ[s,1]f, f ∈ L2([0, 1]).

Lemma 2.9.
U ranP−

s = ΦsH
2 and U ranP+

s = ΦsH
2⊥.

Proof. As ranP−
s is invariant for H∗, it follows from Proposition 2.7 that

U ranP−
s is invariant for the shift S, and is therefore of the form uH2 for

some inner function u by Beurling’s theorem [6]. Moreover, u is a constant
multiple of the projection of 1 onto the invariant subspace. By Lemma 2.4,
the projection of 1 is

√
sΦs, so u = Φs.

2.6. The Sarason transform and the Laplace transform. Recall
that the Laplace transform is defined by the formula

L{f}(s) =
∞�

0

e−stf(t) dt.
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Further, if for f ∈ L2([0, 1]) we define f∼ by the formula

f∼(t) = e−
t
2 f(e−t), t ∈ (0,∞),

then the assignment f 7→ f∼ is a Hilbert space isomorphism from L2([0, 1])
onto L2((0,∞)). By making the substitution x = e−t, we find that

1�

0

f(x)x
z

1−z dx =

0�

∞
f(e−t)e−t

z
1−z (−e−t) dt =

∞�

0

e−
t
2 f(e−t)e−t(

z
1−z

+ 1
2) dt

=

∞�

0

f∼(t)e−t(
1
2

1+z
1−z ) dt = L{f∼}

(
1

2

1 + z

1− z

)
.

Hence,

Uf(z) =
1

1− z
L{f∼}

(
1

2

1 + z

1− z

)
.

So after changes of variables from L2([0, 1]) of the disc to L2((0,∞)) and
from H2 to H2 of the right half-plane, the Sarason transform is simply the
Laplace transform.

3. The inverse Sarason transform. We know from Proposition 2.7
that 1 −H∗ is unitarily equivalent to the unilateral shift. Let us find what
the orthonormal basis zn in H2 corresponds to. This was first done in [10],
and studied further in [23]. In this section we shall use the notation ϕ ∼ g to
mean that the function f ∈ L2([0, 1]) is mapped to ϕ ∈ H2 by the Sarason
transform.

Lemma 3.1.

(3.1) (H∗)j1 = (−1)j
(lnx)j

j!
.

Proof. We proceed by induction. Clearly, (3.1) holds when j = 0. Assume
j ≥ 0 and (3.1) holds. Then

(H∗)j+11 = H∗((H∗)j1) =
(−1)j

j!
H∗(lnx)j =

(−1)j

j!

1�

x

(ln t)j

t
dt

=
(−1)j

j!

0�

lnx

uj du = (−1)j+1 (lnx)
j+1

(j + 1)!
.

The following result is proved in [10] and [23]; we include a proof for
expository reasons.

Lemma 3.2.

zn ∼
n∑
j=0

(
n

j

)
(lnx)j

j!
.
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Proof. We have S = 1− Ĥ∗. Therefore,

zn = Sn1 ∼ (1−H∗)n1.

But using Lemma 3.1,

(1−H∗)n1 =
n∑
j=0

(−1)j
(
n

j

)
(H∗)j1

=
n∑
j=0

(−1)j
(
n

j

)(
(−1)j

(lnx)j

j!

)
=

n∑
j=0

(
n

j

)
(lnx)j

j!
.

Define

en(x) =
n∑
j=0

(
n

j

)
(lnx)j

j!
.

We just proved that en = (1−H∗)n1. The fact that the functions en are an
orthonormal basis is already well-known. Indeed, the Laguerre polynomials

pn(t) =
n∑
j=0

(
n

j

)
(−t)j

j!

are orthogonal polynomials of norm 1 in L2([0,∞)) with weight e−t. By
the change of variables x = ln 1

t , we deduce immediately that en(x) is an
orthonormal basis for L2([0, 1]).

Lemma 3.3. If f ∈ H2 extends to be analytic on a neighborhood of 1,
then

f(z) ∼
∞∑
j=0

f (j)(1)
(lnx)j

(j!)2
.

Proof. If

f(z) =
∞∑
n=0

anz
n

is the power series representation of f , then by Lemma 3.2,

f(z) ∼
∞∑
n=0

an

( n∑
j=0

(
n

j

)
(lnx)j

j!

)

=

∞∑
j=0

(lnx)j

(j!)2

( ∞∑
n=j

n!

(n− j)!
an

)
=

∞∑
j=0

f (j)(1)
(lnx)j

(j!)2
.

As a reality check we verify the formula in Lemma 2.3 by using Lem-
ma 3.3. Note that

k(j)α (1) =
j!ᾱj

(1− ᾱ)j+1
.
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Therefore, Lemma 3.3 implies that

kα(z) ∼
∞∑
j=0

j!ᾱj

(1− ᾱ)j+1

(lnx)j

(j!)2
=

1

1− ᾱ

∞∑
j=0

1

j!

(
ᾱ

1− ᾱ
lnx

)j
=

1

1− ᾱ
e

ᾱ
1−ᾱ

lnx =
1

1− ᾱ
x

ᾱ
1−ᾱ .

The formula in Lemma 3.3 reminds one of Bessel functions. Indeed,

ez−1 ∼
∞∑
j=0

(lnx)j

(j!)2
=

∞∑
j=0

(−1)j

(j!)2
(− lnx)j

=
∞∑
j=0

(−1)j

(j!)2

(√
lnx−4

2

)2j

= J0
(√

lnx−4
)
.

Proposition 3.4. If f ∈ H2 extends to be analytic on a neighborhood
of 1, then Φ : (0, 1] → C defined by

Φ(x) = U∗f(x), x ∈ (0, 1],

extends holomorphically to C\(−∞, 0]. Furthermore, if f−1 denotes the func-
tion defined by f−1(z) = f(−z), then

U∗f−1(x) = Φ(1/x), x ∈ (0, 1].

Proof. Observe that as f is assumed to be analytic on a neighborhood
of 1, the Cauchy–Hadamard radius of convergence formula implies that F ,
defined by the formula

F (w) =

∞∑
k=0

f (k)(1)
wk

(k!)2
,

is an entire function. Consequently, as Lemma 3.3 implies that

Φ(x) = U∗f(x) = F (lnx)

and lnx extends holomorphically to C \ (−∞, 0], also Φ extends holomor-
phically to C \ (−∞, 0].

To see the second assertion of the lemma, note using Lemma 3.3 (with f
replaced with f−1) that

U∗f−1(x) =
∞∑
k=0

f
(k)
−1 (1)

(lnx)k

(k!)2
=

∞∑
k=0

f (k)(1)
(lnx)k

(k!)2
.

4. Proofs and auxiliary results

4.1. Convergence of subspaces

Proposition 4.1. Let Mn be a sequence of closed subspaces of a Hilbert
space H. The following are equivalent.
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(i) Mn → M.
(ii) PMnPM → PM in the strong operator topology on B(H), and there is

no larger space N ⊋ M such that PMnPN → PN .
(iii) PMnPM → PM in the weak operator topology on B(H), and there is no

larger space N ⊋ M such that PMnPN → PN .

Proof. (i)⇒(ii). Let f ∈ H. Let PMf = g. By (i), there exist gn ∈ Mn

such that ∥gn − g∥ → 0. Therefore

∥PMng − PMg∥ ≤ ∥gn − g∥ → 0,

so PMnPM → PM SOT.
If a space N ⊇ M existed for which PMnPN → PN , let h ∈ N ⊖ M.

Let hn = PMnh. Then hn ∈ Mn and hn → h. By (i), this means h ∈ M, so
h = 0 and N = M.

(ii)⇒(i). If f ∈ M, then PMnf → f , so f ∈ limMn. If there were
some h = lim gn for a sequence gn ∈ Mn, then N = M+ Ch would satisfy
PMnPN → PN SOT. So by (ii), this means h ∈ M, so M = limMn.

(ii)⇔(iii). This is because a sequence of projections in a Hilbert space
converges in the WOT if and only if it converges in the SOT. Indeed, suppose
Qn → Q WOT, and Q and each Qn are projections. Then

∥(Q−Qn)f∥2 = ⟨Qf, f⟩ − 2Re⟨Qnf,Qf⟩+ ⟨Qnf, f⟩ → 0.

4.2. Proof of Theorem 1.17. We have already shown that {en} is an
orthonormal basis. Clearly, J is unitary, so must be given by Theorem 1.15
for some c(s) and τ(s). As J1 = 1, we have τ(0) = 0 and c(0) = 1. As
J2 = 1, we have τ(τ(s)) = s and c(τ(s))c(s) = 1.

So τ is an automorphism of S that fixes 0 and has period 2. Once we
know τ ′(0), this will determine τ uniquely. To calculate τ ′(0), note that

e1(x) = 1 +
∂

∂s
xs
∣∣∣∣
s=0

.

Therefore

Je1(x) = −1 +
∂

∂s
[c(s)xτ(s)]s=0 = 1 + c′(0) + c(0)τ ′(0) lnx.

This yields τ ′(0) = −1, so (1.4) hold.

4.3. Proof of Corollary 1.12

Lemma 4.2. Suppose T is a bounded monomial operator given by

(4.1) Txs = c(s)xτ(s).

Then τ is a holomorphic function from S to S, and c is a holomorphic func-
tion on S.
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Proof. The map s 7→ xs is a holomorphic map from S to L2([0, 1]). There-
fore, for each t ∈ S, the map

s 7→ ⟨xs, T ∗xt⟩ = c(s)

1 + τ(s) + t̄

is holomorphic. Letting t = 0 and 1 and taking the quotient, we find that
2 + τ(s)

1 + τ(s)
= 1 +

1

1 + τ(s)

is a meromorphic function of s. Hence τ is meromorphic in S. Moreover,
τ cannot have a pole, since otherwise in a neighborhood of this pole it would
take on all values in a neighborhood of ∞, including ones not in S. Therefore
τ is holomorphic, and consequently so is c(s) since we have

c(s) = (1 + τ(s))⟨xs, T ∗1⟩.

Proof of Corollary 1.12. If T maps Lat(H) to Lat(H), it must be a
monomial operator, since each monomial function spans a one-dimensional
H-invariant subspace.

Conversely, suppose T is a monomial operator given by (4.1), and M ∈
Lat(H). By Lemma 4.2, the function τ is a holomorphic map from S to S.
Define the function ϕ ∈ H∞(D(1, 1)) by

ϕ(z) =
1

1 + τ
(
1−z
z

) .
Then for every s ∈ S we have

ϕ

(
1

1 + s

)
=

1

1 + τ(s)
.

Therefore HT = Tϕ(H), since they agree on all monomials, so HTM =
Tϕ(H)M ⊆ TM, as required.

Remark 4.3. We used the fact that if ϕ ∈ H∞(D(1, 1)), then ϕ(H) is a
bounded operator. We define ϕ(H) to be the monomial operator

ϕ(H) : xs 7→ ϕ

(
1

1 + s

)
xs.

This will be bounded by M if and only if M2 − ϕ(H)∗ϕ(H) ≥ 0, which is
equivalent to

(4.2)
M2 − ϕ

(
1

1+s

)
ϕ
(

1
1+t

)
1 + s+ t̄

≥ 0.

The fact that (4.2) is equivalent to the assertion that ϕ has norm at most
M in H∞(D(1, 1)) is, after a change of variables, the content of Pick’s theo-
rem [26].
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4.4. Proof of Theorem 1.18. Let T be a unitary monomial operator,
given by

(4.3) Txs = c(s)xτ(s).

By Theorem 1.15, we know that τ is a holomorphic automorphism of S. It
is well-known that holomorphic automorphisms of the upper half-plane are
given by linear fractional transformations with coefficients from SL(2,R). So
any holomorphic automorphism of S is of the form

(4.4) τ(s) =
A(s+ 1

2)− iB

iC(s+ 1
2) +D

− 1

2
,

where
(
A B
C D

)
is in SL(2,R). Let σ(s) = −s

1+2s .

Case (i): τ(∞) = ∞. Then τ is of the form τ(s) = αs + β + iγ, where
α > 0, β, γ ∈ R, and β = α−1

2 . As T is given by (4.3) and

c(s) = c0
1 + β̄ + αs+ β

1 + s
= c0α,

we have
T : xs 7→ c0αx

βxαs.

Hence
T : f(x) 7→ c0αx

βf(xα).

Therefore
TL2([ρ, 1]) = L2[ρ

1
α , 1] = A1, 1

2α
log 1

ρ
.

Case (ii): τ(∞) = −1
2 . Then σ ◦ τ(∞) = ∞. So by Case (i), we have

JTL2([ρ, 1]) = A1,w

for some w. Therefore
TL2([ρ, 1]) = A−1,w.

Case (iii): τ(∞) = −1
2 + iδ. Then

Mx−iδT : xs 7→ c̃(s)xτ̃(s),

where τ̃(∞) = −1
2 . By Case (ii), we have

TL2([ρ, 1]) =MxiδA−1,℘ = Aτ,w,

for τ = 2iδ+1
2iδ−1 and w = ℘

1+4δ2
.

Uniqueness of representation: We need to show that if Aτ,w = Aτ ′,w′ ,
then τ ′ = τ and w′ = w. Observe that if U is a unitary, and PMf = g, then
PUMUf = Ug.

Let us calculate PAτ,wx
s. If τ = 1, then

PA1,wx
s = χ[e−2w,1]x

s,
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and

(4.5) ∥PA1,wx
s∥2 = 1

1 + 2Re s
[1− e−2w(1+2Re s)].

Otherwise, τ = 2iδ+1
2iδ−1 for some δ ∈ R. Then

PAτ,wx
s =MxiδJPA1,℘Jx

s−iδ.

From (1.4),

Jxs−iδ =
1

1 + 2s− 2iδ
x

−s+iδ
1+2s−2iδ .

Therefore

∥PAτ,wx
s∥2 = ∥PA1,℘Jx

s−iδ∥2

=
1

|1 + 2s− 2iδ|2
1�

e−2℘

x2Re −s+iδ
1+2s−2iδ dx

When s = u+ iv , this gives

(4.6) ∥PAτ,wx
s∥2 = 1

1 + 2u

[
1− e

−2℘ 1+2u

(1+2u)2+4(δ−v)2
]
.

Comparing (4.5) and (4.6), we see that τ and w are completely determined
by ∥PAτ,wx

s∥2.

5. Proofs using Hardy space theory. Although Theorems 1.14 and
1.19 are stated without using the language of Hardy spaces, the authors do
not know how to prove them directly.

5.1. Proof of 1.14. Let M be in Lat(H). Define a sequence S ⊂ S by
S = {s | ⟨f, xs⟩ = 0 ∀f ∈ M}. The number s will occur in S with multi-
plicity m where m is the largest number such that M ⊥ {xs, (lnx)xs, . . . ,
(lnx)m−1xs}. Let M0 = M(S).

To see that M = M0 +M1 for some singular space M1, we use the
Sarason transform to move to H2. Then M becomes (BSH2)⊥, where B is a
Blaschke product and S is a singular inner function. As BSH2 = BH2∩SH2,
we have

(BSH2)⊥ = (BH2)⊥ + (SH2)⊥,

and M1 is the inverse Sarason transform of (SH2)⊥.

5.2. Proof of 1.19. Let Sτ,w denote the singular inner function

Sτ,w(z) = exp

(
−wτ + z

τ − z

)
.

Let U : L2 → H2 be the Sarason transform. By Lemma 2.9 we have

UA1,wU
∗ = (S1,wH

2)⊥.
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We wish to extend this to other values of τ .

Lemma 5.1.

(5.1) UMxicU
∗(S−1,℘) = FSτ,w,

where τ = 2ic+1
2ic−1 , w = 1

1+4c2
℘ and F (z) = exp(−2icw) 1

1+ic−icz .

Proof. Observe first that M̂x−ic is a unitary operator that takes kα to
ϕ(α)kψ(α), where

ϕ(z) =
1

1 + ic− icz
, ψ(z) =

(1− ic)z + ic

1 + ic− icz
.

Therefore
M̂x−ic = C∗

ψM
∗
ϕ,

and so

(5.2) M̂xic =MϕCψ.

We have
CψS−1,℘(z) = exp

(
℘

−1 + ψ(z)

−1− ψ(z)

)
.

A calculation shows that
−1 + ψ(z)

−1− ψ(z)
=

1

1 + 4c2
τ + z

τ − z
− 2ic

1 + 4c2
.

Therefore CψS−1,℘(z) is a unimodular constant times Sτ,w, and (5.1) holds.

Lemma 5.2.

(5.3) UAτ,wU
∗ = (Sτ,wH

2)⊥.

Proof. We have already proved the case τ = 1, so assume τ ̸= 1. Consider
next τ = −1. Then

UA−1,wU
∗ = UJA1,wU

∗ = UJU∗UA1,wU
∗ = UJU∗(S1,wH

2)⊥.

As UJU∗f(z) = f(−z), we have

UJU∗(S1,wH
2) = (S−1,wH

2),

so
UJU∗(S1,wH

2)⊥ = (S−1,wH
2)⊥.

For τ ̸= ±1, we have, with ϕ and ψ as in (5.2) and F as in Lemma 5.1,

UA⊥
τ,wU

∗ = UMxicJA⊥
1,℘U

∗ = UMxicU
∗(S−1,℘H

2)

= {ϕ(z)F (z)Sτ,w(z)h(ψ(z)) | h ∈ H2}.
As F and ϕ are outer and ψ is an automorphism of D, this proves

UA⊥
τ,wU

∗ = Sτ,wH
2,

and hence (5.3).
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Proof of Theorem 1.19. From Lemma 5.2, we have, for distinct points τk,

UM
( n∑
k=1

wkδτk

)
U∗ =

n∑
k=1

(Sτk,wk
H2)⊥ =

(( n∏
k=1

Sτk,wk

)
H2

)⊥
.

Suppose that µn → µ weak-∗, where µ and each µn are singular. Define
singular inner functions by

φn(z) = exp

[
−
� eiθ + z

eiθ − z
dµn(θ)

]
, φ(z) = exp

[
−
� eiθ + z

eiθ − z
dµ(θ)

]
.

Then ∥φn−φ∥H2 → 0. Indeed, φn tends to φ weakly in H2, since the functions
all have norm 1 and converge pointwise on D. Therefore

∥φn − φ∥2 = 2− 2Re⟨φn, φ⟩ → 0.

This means that not only do the Toeplitz operators Tφn
converge to Tφ in

the strong operator topology, but TφnTφn
converges to TφTφ̄ in the SOT.

This is proved in [25, p. 34]; for the convenience of the reader, we include
the proof. Let f ∈ H2. Then

∥TφnTφ̄nf − TφTφf∥ ≤ ∥Tφn(Tφn
− Tφ)f∥+ ∥(Tφn − Tφ)Tφf∥

≤ sup
n

∥φn∥H∞∥(Tφn
− Tφ)f∥+

(�
|φn − φ|2|Tφ̄f |2

)1/2
.

The first term tends to zero because Tφn
tends to Tφ̄ in the SOT, and the

second term tends to zero because φn tends to φ in measure and |φn−φ| ≤ 2.
As TφnTφn

is the projection onto (φnH
2)⊥, this means by Proposition 4.1

that the spaces (φnH
2)⊥ converge to (φH2)⊥. Applying the inverse Sarason

transform, we conclude that M(µn) converges to M(µ).
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