3-MANIFOLDS WITHOUT ANY EMBEDDING IN SYMPLECTIC 4-MANIFOLDS

ALIAKBAR DAEMI, TYE LIDMAN, AND MIKE MILLER EISMEIER

ABSTRACT. We show that there exist infinitely many closed 3-manifolds that do not embed in closed symplectic 4-manifolds, disproving a conjecture of Etnyre-Min-Mukherjee. To do this, we construct L-spaces that cannot bound positive or negative definite manifolds. The arguments use Heegaard Floer correction terms and instanton moduli spaces.

Theorem 1. There exist infinitely many rational homology spheres which cannot embed in a closed symplectic 4-manifold.

The family of manifolds we use are particular connected sums of elliptic manifolds. Let P denote the Poincaré homology sphere oriented as the boundary of the negative definite E_8 plumbing. Let O denote the "first" octahedral manifold with Seifert invariants (-2; 1/2, 2/3, 3/4), oriented as the boundary of the negative definite E_7 plumbing. The manifolds in the theorem are those of the form mP# - kO with $m \ge 1$ and k > 8m. This answers the conjecture of Etnyre-Min-Mukherjee from [EMM19, p.6] in the negative. (Note that this is stronger than saying that the manifolds are not symplectically fillable, since a separating 3-manifold may sit in a symplectic 4-manifold in a way which is not compatible with any contact structure on the 3-manifold.)

The rational homology spheres above are L-spaces, since they are connected sums of elliptic manifolds [OS05, Section 2]. It is shown in [Muk20] that if an L-space embeds in a symplectic 4-manifold, then it must bound a definite 4-manifold. Hence, we are able to prove Theorem 1 by proving:

Theorem 2. For any pair of integers k and m with $m \ge 1$ and k > 8m, the manifolds mP # - kO are L-spaces which cannot bound positive- or negative-definite 4-manifolds.

The argument has two steps. First, to obstruct the negative-definite manifolds, we use the Heegaard Floer correction terms, which is carried out in Section 1. To obstruct the positive-definite manifolds, we use Chern–Simons invariants and ASD moduli spaces. This is done in Section 2.

Examples of 3-manifolds that do not bound any definite 4-manifold were previously given in [NST19, GL20]. In [NST19], a filtration of instanton Floer homology given by

AD was partially supported by NSF Grants DMS-1812033, DMS-2208181 and NSF FRG Grant DMS-1952762.

TL was partially supported by NSF grant DMS-2105469 and a Sloan fellowship.

MME was partially supported by NSF FRG Grant DMS-1952762.

the Chern–Simons functional is used to construct integer homology spheres without any positive- or negative-definite 4-manifold filling. In [GL20], the Heegaard Floer correction terms are used to construct examples of rational homology spheres that bound no definite 4-manifold.

Acknowledgements

TL and MME thank the Department of Mathematics and Statistics at Wash U for their hospitality during their visits.

1. The d-invariant argument

In this section, we use Heegaard Floer *d*-invariants [OS03] to obstruct the manifolds mP# - kO from bounding negative definite manifolds for suitable positive values of k, m. **Proposition 1.1.** Let k, m > 0. The manifold mP# - kO cannot bound a negative-definite 4-manifold for k > 8m.

Before proving the proposition, we need to compute the Heegaard Floer d-invariants of O.

Lemma 1.2. For a choice of labelling, the two Spin^c structures on O, $\mathfrak{s}_0, \mathfrak{s}_1$, satisfy

$$d(-O, \mathfrak{s}_0) = -7/4, \ d(-O, \mathfrak{s}_1) = -1/4.$$

Proof. There are several ways to compute the *d*-invariants of *O*. We opt for a surgery approach for simplicity. We have that $-O = S_2^3(T_{2,3})$ (see for example [Doi15, Theorem 2, Equation 2])). By [OS12, Theorem 6.1] (and the formulas following), there is a labeling of the Spin^c structures such that

$$d(S_2^3(T_{2,3}),\mathfrak{s}_0) = \frac{1}{4} - 2t_0(T_{2,3}), \quad d(S_2^3(T_{2,3}),\mathfrak{s}_1) = -\frac{1}{4} - 2t_1(T_{2,3}),$$

where $t_i(K)$ denotes the *i*th torsion coefficient, $\sum_{j\geq 1} ja_{|i|+j}$, and a_k is the *k*th coefficient of the symmetrized Alexander polynomial. The result now follows, since $t_0(T_{2,3}) = 1$ and $t_1(T_{2,3}) = 0$ (see [OS12, Equations 2 and 3]).

Proof of Proposition 1.1. Suppose that mP# - kO bounds a negative-definite cobordism. Then [OS12, Proposition 5.2] implies that

(1)
$$\max d(mP\# - kO, \mathfrak{s}) \ge 0$$

Recall that d-invariants are additive under connected sum and that d(P) = 2. We thus have from Lemma 1.2

$$\max_{\mathfrak{s}} d(mP\# - kO, \mathfrak{s}) = 2m - \frac{\kappa}{4}.$$

It follows that for k > 8m, (1) is violated.

Remark 1.3. It seems likely that Proposition 1.1 can also be proved using Donaldson's diagonalizability theorem and lattice techniques. We anticipate that the assumption k > 8m can be relaxed somewhat using refinements of Frøyshov's instanton *h*-invariant for rational homology spheres.

2. The Chern-Simons argument

In this section, we use the instanton moduli spaces to obstruct mP#-kO from bounding a positive-definite cobordism, complementary to the results in Proposition 1.1.

Proposition 2.1. Let m > 0 and k be integers. Then the manifold mP# - kO cannot bound a positive-definite 4-manifold.

To prove this claim, we consider moduli spaces of SU(2)-instantons. We first provide a sketch of the argument for non-experts, with further details below.

Sketch of proof. Suppose there exists such a positive-definite manifold W_0 . By reversing the orientation, adding 3-handles, and surgering out a set of loops giving a generating set of $H_1(W_0; \mathbb{R})$, we obtain a negative-definite cobordism $W: P \to \bigsqcup_k O \bigsqcup_{m-1} -P$ with $b_1 = 0$. We will obtain a contradiction by considering an orientable 1-dimensional moduli space Mof instantons on this cobordism W (more precisely we attach cylindrical ends to W and consider a perturbation of the ASD equation). Our contradiction will come from showing that the number of ends, counted with sign, is non-zero. The ends of this moduli space M correspond to gluing instantons on W to instantons on the incoming end $\mathbb{R} \times P$ or the outgoing ends $\mathbb{R} \times O$ and $\mathbb{R} \times -P$.

We first construct a family of ends of M by gluing a particular instanton on $\mathbb{R} \times P$ to the reducible flat connections over W. These reducibles are determined by $H_1(W;\mathbb{Z})$, and are isolated and well-behaved with respect to gluing because $b_1(W) = 0$ and $b^+(W) = 0$, respectively. This construction produces as many ends of M as there are elements of $H_1(W;\mathbb{Z})/H_1(\partial W;\mathbb{Z})$, and they are all oriented in the same direction.

We use topological energy $\kappa(A)$ of instantons to establish that these are the only ends. The moduli space M is the moduli space of instantons with topological energy equal to $\frac{1}{120}$. In general, topological energy is non-negative, additive under gluing of instantons, and multiplicative under passing to covering spaces. An instanton A on W determines flat connections α and α' on the incoming and outgoing boundary components of W, and the topological energy $\kappa(A)$ is equal modulo \mathbb{Z} to the difference of Chern–Simons invariants $CS(\alpha) - CS(\alpha') \in \mathbb{R}/\mathbb{Z}$.

There are two key points.

- The instanton on $\mathbb{R} \times P$ used above has $\kappa(A) = \frac{1}{120}$, and the reducible flat connections on W have $\kappa(A) = 0$. By additivity of energy, the instantons we constructed on W above have energy $\kappa = \frac{1}{120}$, as do all other instantons in the moduli space M. All other instantons on $\mathbb{R} \times P$ have larger energy; when glued to instantons on W they produce instantons of energy larger than $\frac{1}{120}$, which do not lie in M.
- All instantons on $\mathbb{R} \times \pm O$ have $\kappa(A) \geq \frac{1}{48}$, so also do not contribute to ends of M. Here we use the relation to the Chern–Simons invariant: for any flat connection α on O, we have $48CS(\alpha) \equiv 0 \in \mathbb{R}/\mathbb{Z}$. This follows because the universal cover of O is the 3-sphere, where the Chern–Simons invariant is zero; the Chern–Simons invariant is multiplicative under covers and $|\pi_1(O)| = 48$.

Because every end of M is constructed by the gluing procedure (gluing an instanton on a cylindrical end to one on W), the only ends are those initially described. This gives the

desired contradiction: the signed count of ends is $\pm |H_1(W;\mathbb{Z})/H_1(\partial W;\mathbb{Z})| \neq 0$, but the signed count of ends of an oriented 1-manifold without boundary must be zero.

Remark 2.2. Proposition 2.1 holds more generally for any closed oriented 3-manifold Y with $|\pi_1(Y)| < 120$ in place of O, with the same proof.

Remark 2.3. Using moduli spaces of SU(2)-instantons to study negative definite smooth closed 4-manifolds goes back to Donaldson's groundbreaking work [Don83]. Here we use an energy argument to analyze boundary components of a 1-dimensional moduli space of SU(2)-instantons. Similar strategies appear, for example, in [FS85, Fur90, FS90, HK12, PC17]. Another key tool in the study of negative definite 4-manifolds with integer homology sphere boundary is Frøyshov's invariant h of [Frø02]. Frøyshov's invariant is the instanton counterpart of Heegaard Floer *d*-invariant used in the previous section. Topological energy is employed in [Dae20, NST19] to construct refinements of Frøyshov's invariant. We expect that the invariants of [Dae20, NST19] generalize to invariants of rational homology spheres using the results of [Mil19], and that the argument above can be recast in that language.

2.1. **Detailed argument.** Choose a metric on W which is cylindrical (identical to the product metric) in a collar neighborhood of the boundary. We will consider instantons on the complete Riemannian manifold $W \cup_{\partial W} [0, \infty) \times \partial W$, where we have attached infinite cylindrical ends. By an abuse of notation, we ignore this subtlety and refer by the same name W to both the compact manifold W and the version with cylindrical ends, as each may be recovered from the other. By partitioning ∂W into a set of *incoming ends* and *outgoing ends*, we may write that $W: Y \to Y'$ is a cobordism, where $\partial W = Y' \sqcup -Y$.

We are interested in SU(2)-connections A on the trivial bundle over W which are asymptotic to a flat connection α over Y and a flat connection α' over Y', and for which the *topological energy*, defined as

$$\kappa(A) := \frac{1}{8\pi^2} \int_W \operatorname{tr}(F_A \wedge F_A),$$

is finite. This quantity is constant with respect to continuous deformations of A, and its mod \mathbb{Z} value is equal to $CS(\alpha) - CS(\alpha')$. (Taking Y' to be empty, this serves as a definition of $CS(\alpha)$.)

Define the gauge group to be the space of all maps $u : W \to SU(2)$, regarded as automorphisms of the trivial SU(2)-bundle, that are asymptotic to a map $v : Y \to SU(2)$ on the incoming end and a map $v' : Y' \to SU(2)$ on the outgoing end. Then we may pull back any connection A as above with respect to u to obtain the connection u^*A that has the same topological energy as A and is asymptotic to $v^*\alpha$ and $(v')^*\alpha'$ on the incoming and the outgoing ends of W. The automorphisms $u = \pm I$ act trivially on A, and A is called *irreducible* if these are the only elements of the stabilizer Γ_A of A under the action of the gauge group. The other possibilities for the isomorphism type of Γ_A are U(1) and SU(2)where A is called respectively an *abelian* and a *central* connection. For instance, the trivial connection is a central connection. We use similar terminology to define the three types of connections on 3-manifolds. Suppose $W : Y \to Y'$ is a cobordism. For any flat connections α, α' on Y and any real number κ , let $M_{\kappa}(W; \alpha, \alpha')$ denote the moduli spaces of connections A on W with topological energy κ that are asymptotic to α along the incoming ends and α' along the outgoing ends, and which satisfy the ASD equation

$$F^+(A) = 0$$

with respect to the metric on W. Any solution A of the ASD equation satisfies

$$\kappa(A) = 8\pi^2 \|F_A\|_{L^2}^2.$$

In particular, $\kappa(A) \ge 0$, and $\kappa(A) = 0$ if and only if A is flat.

A special case of interest is when $W = \mathbb{R} \times N$ for a connected 3-manifold N. For any flat connections α, β on N and any non-negative κ with

$$\kappa \equiv \mathrm{CS}(\alpha) - \mathrm{CS}(\beta) \mod \mathbb{Z},$$

we have a moduli space $M_{\kappa}(\mathbb{R} \times N; \alpha, \beta)$. Translation along the \mathbb{R} factor determines an action of \mathbb{R} on this moduli space. This action is free if κ is positive, and the quotient in this case is denoted by $\check{M}_{\kappa}(N; \alpha, \beta)$.

Next, we review some of the properties of the moduli spaces $\check{M}_{\kappa}(N;\alpha,\beta)$ in the case that N is one of the 3-manifolds $\pm P$, $\pm O$ with spherical metric. These manifolds lie in the more general family of *binary polyhedral spaces*; their instanton moduli spaces are studied in [Aus95], and the following lemma can be deduced from the general calculation of [Aus95, Section 4.3]. See also the more recent work [Ola22] in this direction.

Lemma 2.4 ([Aus95]). If Y is a spherical 3-manifold, then $\check{M}_{\kappa}(Y; \alpha, \beta)$ are smooth manifolds. We also have the following facts about flat connections and instantons over $\mathbb{R} \times Y$ for $Y = \pm O, \pm P$.

- (i) The manifold P supports three flat connections: the trivial connection θ and two irreducible flat connections α_1, α_2 with CS-values $\frac{1}{120}, \frac{49}{120}$ respectively. The moduli space $\check{M}_{\frac{1}{120}}(P; \alpha_1, \theta)$ is a singleton.
- (ii) Every other nonempty moduli space $\breve{M}_{\kappa}(P; \alpha, \beta)$ has $\kappa \geq 2/5$.
- (iii) Every nonempty moduli space $\breve{M}_{\kappa}(-P; \alpha, \theta)$ has $\kappa \geq \frac{71}{120}$.
- (iv) Every nonempty moduli space $\check{M}_{\kappa}(\pm O; \alpha, \beta)$ has $\kappa \geq \frac{1}{48}$.

Proof. The claim about smoothness is proved in [Aus95, Section 4.5]; it follows from the corresponding fact for instantons over S^4 . The flat connections and Chern–Simons values on P are computed as in [FS90, Proposition 2.8] and [FS90, Theorem 3.7(3)].¹ Item (ii) follows from inspection of these Chern–Simons invariants, as does item (iii) because $CS_{-Y}(\alpha) = -CS_Y(\alpha)$ and $\kappa > 0$ has $\kappa \equiv CS(\alpha) - CS(\beta)$.

¹In comparing, Fintushel–Stern's normalization of the Chern–Simons functional is four times ours; though their function appears to be defined using the same formula, the factor of 4 arises because they use SO(3)-connections, whereas we use SU(2)-connections.

That the 0-dimensional component of $\tilde{M}(P; \alpha_1, \theta)$ is a singleton follows from the computation of [Aus95, Section 4.3],² which also shows that this singleton descends from an instanton on S^4 over a bundle with $c_2 = 1$, hence topological energy 1. Because topological energy is multiplicative under covers and $|\pi_1(P)| = 120$, item (i) follows.

Item (iv) was explained in the sketch of the proof above, and follows because S^3 is a 48-fold cover of O.

If mP # - kO bounds a positive-definite manifold for some m > 0, then as in the sketch of the proof we can construct a cobordism $W: P \to \bigsqcup_k O \bigsqcup_{m-1} - P$ with $b_1(W) = b^+(W) = 0$; glue cylindrical ends to W and fix a Riemannian metric on W compatible with the spherical metrics on the ends. The proof of Proposition 2.1 will follow from an analysis of the instanton moduli spaces on W. A standard reference for the study of the moduli spaces of SU(2)-instantons on 4-manifolds with cylindrical ends is [Don02], which mostly focuses on the case of 4-manifolds whose boundary components are integer homology spheres. Since the flat connections on the boundary components of our 4-manifold W are either irreducible or central, the results of [Don02] can be readily adapted to the present setup, and we assume the reader has some basic familiarity with them.

The moduli spaces $M_{\kappa}(W; \alpha, \alpha')$ are not necessarily smooth anymore. However, the local behavior of the moduli space around any instanton A is governed by the ASD operator $D_A := d_A^+ \oplus d_A^* : \Omega^1 \to \Omega^+ \oplus \Omega^0$ which is a Fredholm operator obtained as a combination of the *Coulomb gauge* condition and linearizing the instanton equation at A [Don02, Chapter 3]. Moreover, the instanton equation can be perturbed by a holonomy perturbation π so that the moduli space $M_{\kappa}^{\pi}(W; \alpha, \alpha')$ of solutions of the perturbed ASD equation

(2)
$$F^+(A) + \pi(A) = 0$$

is a smooth manifold away from reducible elements of the moduli space [Mil19, Theorem 4.37]. In fact, we can pick π so that the L^2 norm of $\pi(A)$ is less than a given positive constant ϵ , the perturbation $\pi(A)$ vanishes for any reducible connection A, and $\pi(A)$ depends on the restriction of A to a compact subspace of W. (See [Kro05, Section 3] for a review of holonomy perturbations on 4-manifolds.) The dimension of the irreducible locus equals the Fredholm index of D_A where A is any connection on W that has topological energy κ and is asymptotic to α and α' on the cylindrical ends. Since $b_1(W) = b^+(W) = 0$, the moduli space has a canonical orientation. (In general, one needs an orientation of the vector space $H^1(W; \mathbb{R}) \oplus H^+(W; \mathbb{R})^*$ to orient the moduli spaces $M_{\kappa}^{\pi}(W; \alpha, \alpha')$.)

Lemma 2.5. There is a holonomy perturbation π for W such that the following holds.

- (i) All irreducible π -instantons have surjective ASD operator, so that the irreducible part of $M_{\kappa}^{\pi}(W; \alpha, \alpha')$ is a smooth manifold of dimension equal to the index of D_A .
- (ii) The moduli space $M_0^{\pi}(W; \theta, \theta')$ of π -instantons with vanishing topological energy, which are asymptotic to the trivial connections θ and θ' on the incoming and the outgoing ends of W, does not contain any irreducible.

²In comparing, our α_1 is Austin's Q, and our $\check{M}(Y; \alpha, \beta)$ is Austin's $\check{\mathcal{M}}(\beta, \alpha)$.

- (iii) There is a one to one correspondence between the central elements of $M_0^{\pi}(W; \theta, \theta')$ and the homomorphisms $H_1(W; \mathbb{Z}) \to \mathbb{Z}/2$ which are trivial on ∂W . For any such central connection, the perturbed ASD operator is injective.
- (iv) There is a one to one correspondence between the abelian elements of $M_0^{\pi}(W; \theta, \theta')$ and the free orbits of complex-conjugation on the space of homomorphisms $H_1(W; \mathbb{Z}) \rightarrow U(1)$ which are trivial on ∂W . For any such abelian connection, the perturbed ASD operator is injective.
- (v) All π -instantons on W have non-negative topological energy.

In particular, if a and b denote the number of central and abelian elements of $M_0^{\pi}(W; \theta, \theta')$, then a + 2b is equal to the cardinality of $H_1(W; \mathbb{Z})/H_1(\partial W; \mathbb{Z})$.

Proof. A perturbation satisfying (i) is given in [Mil19, Theorem 4.37]. Because reducible connections on a cobordism with $b^+(W) = 0$ are cut out transversely in the reducible locus [Mil19, Lemma 4.20], the perturbation $\pi(A)$ can be assumed to vanish when A is reducible. It follows that the reducible elements of $M_0(W; \theta, \theta')$ coincide with the reducible elements of $M_0^-(W; \theta, \theta')$.

The index of the trivial connection is -3, so that the expected dimension of the irreducible part of $M_0^{\pi}(W; \theta, \theta')$ is -3, and hence the irreducible part of this moduli space is empty, establishing (ii).

Because the reducibles in $M_0^{\pi}(W; \theta, \theta')$ agree with those in $M_0(W; \theta, \theta')$, they correspond to flat connections on W which are trivial on ∂W , hence conjugacy classes of homomorphisms $\pi_1(W) \to SU(2)$ that restrict to the trivial homomorphism on each boundary component. Those homomorphisms with image in $\{\pm I\}$ correspond to central connections, for which the conjugation action is trivial; those homomorphisms with image conjugate to a subgroup of U(1) correspond to abelian connections, for which the conjugation action is the action of complex conjugation. Because homomorphisms from $\pi_1(W)$ to an abelian group factor through $H_1(W; \mathbb{Z})$, this gives the enumeration of items (iii) and (iv). The concluding enumeration follows because a + 2b coincides with the number of homomorphisms $H_1(W; \mathbb{Z})/H_1(\partial W; \mathbb{Z}) \to S^1$. Because $H_1(W; \mathbb{Z})$ is a finite abelian group, Pontryagin duality shows that this coincides with the number of elements of $H_1(W; \mathbb{Z})/H_1(\partial W; \mathbb{Z})$.

The central connection has injective ASD operator for the trivial perturbation, and hence the same holds for a small perturbation π . That we may choose π so that this is also true for abelian connections follows from the argument of [Mil19, Theorem 4.37] and the fact that the normal index $\operatorname{Ind}(D_A) + 1 + b^+(W) - b_1(W)$ is nonpositive (here, it is -2); see also [CDX20, Section 7.3] for a similar discussion and conclusion.

It remains to verify the claim in (v), which follows from the assumption that π is small. For any connection A we have

$$\kappa(A) = \frac{1}{8\pi^2} \int_W \operatorname{tr}(F_A \wedge F_A) = \frac{1}{8\pi^2} \left(\|F_A\|_{L^2}^2 - 2\|F_A^+\|_{L^2}^2 \right)$$

Thus for any solution of (2) we have $\kappa(A) = \frac{1}{8\pi^2} \left(\|F_A\|_{L^2}^2 - 2\|\pi(A)\|_{L^2}^2 \right).$

By taking π small enough, we can guarantee that $\kappa(A)$ is greater than $-\epsilon$ for any fixed positive constant ϵ . Since the mod \mathbb{Z} value of $\kappa(A)$ belongs to a fixed finite set, we obtain (v) for a small enough value of ϵ . (In fact, $\epsilon = \frac{1}{240}$ will do.)

Proof of Proposition 2.1. For the duration of this argument we write $\kappa = \frac{1}{120}$. For the perturbation π constructed in Lemma 2.5, we consider the moduli space $M_{\kappa}^{\pi}(W; \alpha_1, \theta')$. Since α_1 is irreducible, all elements of this moduli space are irreducible, and $M_{\kappa}^{\pi}(W; \alpha_1, \theta')$ is a smooth manifold. Gluing the connection $B \in \check{M}_{\kappa}(P; \alpha_1, \theta)$ to the trivial connection Θ on W determines a connection A on W asymptotic to α_1 at $-\infty$ and the trivial connection θ' at $+\infty$; by additivity of topological energy, $\kappa(A) = \frac{1}{120}$. By additivity of ASD index [Don02, Chapter 3], we have

$$ind(D_A^+) = ind(D_B^+) + ind(D_{\Theta}^+) + dim(\Gamma_{\theta}) = 1 + (-3) + 3 = 1.$$

Thus $M^{\pi}_{\kappa}(W; \alpha_1, \theta')$ is an oriented 1-dimensional smooth manifold.

Next, we study the ends of the 1-dimensional manifold $M_{\kappa}^{\pi}(W; \alpha_1, \theta')$ using the standard compactification and gluing theory results in Yang–Mills gauge theory. Since $\frac{1}{120} < 1$, there is no room for bubbling. Thus the only source of non-compactness is the possibility of energy sliding off the ends of W, in two possible ways:

- (i) Energy could slide off the incoming end, corresponding to gluing an instanton $\alpha \to \beta$ over $\mathbb{R} \times P$ to a π -instanton $\beta \to \theta'$ over W.
- (ii) Energy could slide off one of the outgoing ends, corresponding to gluing a π -instanton $\alpha \to \beta'$ over W to an instanton $\beta' \to \theta$ over $\mathbb{R} \times -P$ or $\mathbb{R} \times \pm O$.

However, Lemma 2.4 and additivity of topological energy imply that the only possibility is case (i), where $\beta = \theta$. It follows that if $[A_i]$ is a sequence in $M_{\kappa}^{\pi}(W; \alpha_1, \theta')$ without any convergent subsequence, then this sequence is chain convergent to [B, A] in the sense of [Don02, Chapter 5] where [B] is the element of $\check{M}_{\kappa}(P; \alpha_1, \theta)$ and $[A] \in M_0^{\pi}(W; \theta, \theta')$. Now the same argument as in [Don87] shows that for any abelian (resp. central) $[A] \in$ $M_0^{\pi}(W; \theta, \theta')$, the pair [A, B] contributes two ends (resp. one end) to the moduli space $M_{\kappa}^{\pi}(W; \alpha_1, \theta')$, and all of these ends have the same orientation. (See also [Dae20, Section 4.2] for a similar discussion.) By the conclusion of Lemma 2.5, we see that this gives as many ends of $M_{\kappa}^{\pi}(W; \alpha_1, \theta')$ as there are elements of $H_1(W, \mathbb{Z})/H_1(\partial W; \mathbb{Z})$, all of which are oriented in the same direction. As every oriented 1-manifold with finitely many ends has zero ends when counted with sign, this is a contradiction; there is no positive-definite 4-manifold with boundary mP # - kO where m > 0.

References

- [Aus95] David M. Austin. Equivariant Floer groups for binary polyhedral spaces. Math. Ann., 302(2):295– 322, 1995.
- [CDX20] Lucas Culler, Aliakbar Daemi, and Yi Xie. Surgery, polygons and su(n)-floer homology. Journal of Topology, 13(2):576–668, 2020.
- [Dae20] Aliakbar Daemi. Chern-Simons functional and the homology cobordism group. Duke Math. J., 169(15):2827–2886, 2020.

- [Doi15] Margaret I. Doig. Finite knot surgeries and Heegaard Floer homology. Algebr. Geom. Topol., 15(2):667–690, 2015.
- [Don83] S. K. Donaldson. An application of gauge theory to four-dimensional topology. J. Differential Geom., 18(2):279–315, 1983.
- [Don87] Simon Donaldson. The orientation of Yang-Mills moduli spaces and 4-manifold topology. J. Differential Geom., 26(3):397–428, 1987.
- [Don02] S. K. Donaldson. Floer homology groups in Yang-Mills theory, volume 147 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 2002. With the assistance of M. Furuta and D. Kotschick.
- [EMM19] John B. Etnyre, Hyunki Min, and Anubhav Mukherjee. On 3-manifolds that are boundaries of exotic 4-manifolds, 2019. arXiv:1901.07964.
- [Frø02] Kim A. Frøyshov. Equivariant aspects of Yang-Mills Floer theory. *Topology*, 41(3):525–552, 2002.
- [FS85] Ronald Fintushel and Ronald J. Stern. Pseudofree orbifolds. Ann. of Math. (2), 122(2):335–364, 1985.
- [FS90] Ronald Fintushel and Ronald J Stern. Instanton homology of seifert fibred homology three spheres. Proc. London Math. Soc, 61(3):109–137, 1990.
- [Fur90] Mikio Furuta. Homology cobordism group of homology 3-spheres. *Invent. Math.*, 100(2):339–355, 1990.
- [GL20] Marco Golla and Kyle Larson. 3-manifolds that bound no definite 4-manifold. *arXiv e-prints*, page arXiv:2012.12929, December 2020.
- [HK12] Matthew Hedden and Paul Kirk. Instantons, concordance, and Whitehead doubling. J. Differential Geom., 91(2):281–319, 2012.
- [Kro05] P. B. Kronheimer. Four-manifold invariants from higher-rank bundles. J. Differential Geom., 70(1):59–112, 2005.
- [Mil19] Mike Miller Eismeier. Equivariant instanton homology. *arXiv e-prints*, page arXiv:1907.01091, July 2019.
- [Muk20] Anubhav Mukherjee. A note on embeddings of 3-manifolds in symplectic 4-manifolds, 2020. arXiv:2010.03681.
- [NST19] Yuta Nozaki, Kouki Sato, and Masaki Taniguchi. Filtered instanton Floer homology and the homology cobordism group. arXiv e-prints, page arXiv:1905.04001, May 2019.
- [Ola22] Gard Olav Helle. Equivariant instanton Floer homology and calculations for the binary polyhedral spaces. arXiv e-prints, page arXiv:2203.09471, March 2022.
- [OS03] Peter Ozsváth and Zoltán Szabó. Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary. Adv. Math., 173(2):179–261, 2003.
- [OS05] Peter Ozsváth and Zoltán Szabó. On knot Floer homology and lens space surgeries. Topology, 44(6):1281–1300, 2005.
- [OS12] Brendan Owens and Sašo Strle. A characterization of the $\mathbb{Z}^n \oplus \mathbb{Z}(\delta)$ lattice and definite nonunimodular intersection forms. Amer. J. Math., 134(4):891–913, 2012.
- [PC17] Juanita Pinzón-Caicedo. Independence of satellites of torus knots in the smooth concordance group. Geom. Topol., 21(6):3191–3211, 2017.

DEPARTMENT OF MATHEMATICS AND STATISTICS, WASHINGTON UNIVERSITY IN ST. LOUIS *Email address*: adaemi@wustl.edu

DEPARTMENT OF MATHEMATICS, NORTH CAROLINA STATE UNIVERSITY *Email address*: tlid@math.ncsu.edu

DEPARTMENT OF MATHEMATICS, COLUMBIA UNIVERSITY *Email address:* smm2344@columbia.edu