
3-MANIFOLDS WITHOUT ANY EMBEDDING IN SYMPLECTIC

4-MANIFOLDS

ALIAKBAR DAEMI, TYE LIDMAN, AND MIKE MILLER EISMEIER

Abstract. We show that there exist infinitely many closed 3-manifolds that do not em-
bed in closed symplectic 4-manifolds, disproving a conjecture of Etnyre-Min-Mukherjee.
To do this, we construct L-spaces that cannot bound positive or negative definite mani-
folds. The arguments use Heegaard Floer correction terms and instanton moduli spaces.

Theorem 1. There exist infinitely many rational homology spheres which cannot embed
in a closed symplectic 4-manifold.

The family of manifolds we use are particular connected sums of elliptic manifolds.
Let P denote the Poincaré homology sphere oriented as the boundary of the negative
definite E8 plumbing. Let O denote the “first” octahedral manifold with Seifert invariants
(−2; 1/2, 2/3, 3/4), oriented as the boundary of the negative definite E7 plumbing. The
manifolds in the theorem are those of the form mP# − kO with m ≥ 1 and k > 8m.
This answers the conjecture of Etnyre-Min-Mukherjee from [EMM19, p.6] in the negative.
(Note that this is stronger than saying that the manifolds are not symplectically fillable,
since a separating 3-manifold may sit in a symplectic 4-manifold in a way which is not
compatible with any contact structure on the 3-manifold.)

The rational homology spheres above are L-spaces, since they are connected sums of
elliptic manifolds [OS05, Section 2]. It is shown in [Muk20] that if an L-space embeds in
a symplectic 4-manifold, then it must bound a definite 4-manifold. Hence, we are able to
prove Theorem 1 by proving:

Theorem 2. For any pair of integers k and m with m ≥ 1 and k > 8m, the manifolds
mP#− kO are L-spaces which cannot bound positive- or negative-definite 4-manifolds.

The argument has two steps. First, to obstruct the negative-definite manifolds, we use
the Heegaard Floer correction terms, which is carried out in Section 1. To obstruct the
positive-definite manifolds, we use Chern–Simons invariants and ASD moduli spaces. This
is done in Section 2.

Examples of 3-manifolds that do not bound any definite 4-manifold were previously
given in [NST19, GL20]. In [NST19], a filtration of instanton Floer homology given by
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the Chern–Simons functional is used to construct integer homology spheres without any
positive- or negative-definite 4-manifold filling. In [GL20], the Heegaard Floer correction
terms are used to construct examples of rational homology spheres that bound no definite
4-manifold.
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1. The d-invariant argument

In this section, we use Heegaard Floer d-invariants [OS03] to obstruct the manifolds
mP#− kO from bounding negative definite manifolds for suitable positive values of k,m.

Proposition 1.1. Let k,m > 0. The manifold mP#−kO cannot bound a negative-definite
4-manifold for k > 8m.

Before proving the proposition, we need to compute the Heegaard Floer d-invariants of
O.

Lemma 1.2. For a choice of labelling, the two Spinc structures on O, s0, s1, satisfy

d(−O, s0) = −7/4, d(−O, s1) = −1/4.

Proof. There are several ways to compute the d-invariants of O. We opt for a surgery
approach for simplicity. We have that −O = S3

2(T2,3) (see for example [Doi15, Theorem 2,
Equation 2])). By [OS12, Theorem 6.1] (and the formulas following), there is a labeling of
the Spinc structures such that

d(S3
2(T2,3), s0) =

1

4
− 2t0(T2,3), d(S3

2(T2,3), s1) = −1

4
− 2t1(T2,3),

where ti(K) denotes the ith torsion coefficient,
∑

j≥1 ja|i|+j , and ak is the kth coefficient

of the symmetrized Alexander polynomial. The result now follows, since t0(T2,3) = 1 and
t1(T2,3) = 0 (see [OS12, Equations 2 and 3]). □

Proof of Proposition 1.1. Suppose that mP#− kO bounds a negative-definite cobordism.
Then [OS12, Proposition 5.2] implies that

(1) max
s

d(mP#− kO, s) ≥ 0.

Recall that d-invariants are additive under connected sum and that d(P ) = 2. We thus
have from Lemma 1.2

max
s

d(mP#− kO, s) = 2m− k

4
.

It follows that for k > 8m, (1) is violated. □

Remark 1.3. It seems likely that Proposition 1.1 can also be proved using Donaldson’s
diagonalizability theorem and lattice techniques. We anticipate that the assumption k >
8m can be relaxed somewhat using refinements of Frøyshov’s instanton h-invariant for
rational homology spheres.
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2. The Chern–Simons argument

In this section, we use the instanton moduli spaces to obstructmP#−kO from bounding
a positive-definite cobordism, complementary to the results in Proposition 1.1.

Proposition 2.1. Let m > 0 and k be integers. Then the manifold mP# − kO cannot
bound a positive-definite 4-manifold.

To prove this claim, we consider moduli spaces of SU(2)-instantons. We first provide a
sketch of the argument for non-experts, with further details below.

Sketch of proof. Suppose there exists such a positive-definite manifold W0. By reversing
the orientation, adding 3-handles, and surgering out a set of loops giving a generating set of
H1(W0;R), we obtain a negative-definite cobordism W : P → ⊔kO ⊔m−1 −P with b1 = 0.
We will obtain a contradiction by considering an orientable 1-dimensional moduli space M
of instantons on this cobordism W (more precisely we attach cylindrical ends to W and
consider a perturbation of the ASD equation). Our contradiction will come from showing
that the number of ends, counted with sign, is non-zero. The ends of this moduli space
M correspond to gluing instantons on W to instantons on the incoming end R× P or the
outgoing ends R×O and R×−P .

We first construct a family of ends of M by gluing a particular instanton on R × P to
the reducible flat connections over W . These reducibles are determined by H1(W ;Z), and
are isolated and well-behaved with respect to gluing because b1(W ) = 0 and b+(W ) = 0,
respectively. This construction produces as many ends of M as there are elements of
H1(W ;Z)/H1(∂W ;Z), and they are all oriented in the same direction.

We use topological energy κ(A) of instantons to establish that these are the only ends.
The moduli space M is the moduli space of instantons with topological energy equal to
1

120 . In general, topological energy is non-negative, additive under gluing of instantons,
and multiplicative under passing to covering spaces. An instanton A on W determines flat
connections α and α′ on the incoming and outgoing boundary components of W , and the
topological energy κ(A) is equal modulo Z to the difference of Chern–Simons invariants
CS(α)− CS(α′) ∈ R/Z.

There are two key points.

• The instanton on R×P used above has κ(A) = 1
120 , and the reducible flat connec-

tions on W have κ(A) = 0. By additivity of energy, the instantons we constructed
on W above have energy κ = 1

120 , as do all other instantons in the moduli space
M . All other instantons on R×P have larger energy; when glued to instantons on
W they produce instantons of energy larger than 1

120 , which do not lie in M .

• All instantons on R×±O have κ(A) ≥ 1
48 , so also do not contribute to ends of M .

Here we use the relation to the Chern–Simons invariant: for any flat connection
α on O, we have 48CS(α) ≡ 0 ∈ R/Z. This follows because the universal cover
of O is the 3-sphere, where the Chern–Simons invariant is zero; the Chern–Simons
invariant is multiplicative under covers and |π1(O)| = 48.

Because every end of M is constructed by the gluing procedure (gluing an instanton on
a cylindrical end to one on W ), the only ends are those initially described. This gives the
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desired contradiction: the signed count of ends is ±|H1(W ;Z)/H1(∂W ;Z)| ≠ 0, but the
signed count of ends of an oriented 1-manifold without boundary must be zero. □

Remark 2.2. Proposition 2.1 holds more generally for any closed oriented 3-manifold Y
with |π1(Y )| < 120 in place of O, with the same proof.

Remark 2.3. Using moduli spaces of SU(2)-instantons to study negative definite smooth
closed 4-manifolds goes back to Donaldson’s groundbreaking work [Don83]. Here we use
an energy argument to analyze boundary components of a 1-dimensional moduli space
of SU(2)-instantons. Similar strategies appear, for example, in [FS85,Fur90,FS90,HK12,
PC17]. Another key tool in the study of negative definite 4-manifolds with integer homology
sphere boundary is Frøyshov’s invariant h of [Frø02]. Frøyshov’s invariant is the instanton
counterpart of Heegaard Floer d-invariant used in the previous section. Topological energy
is employed in [Dae20,NST19] to construct refinements of Frøyshov’s invariant. We expect
that the invariants of [Dae20,NST19] generalize to invariants of rational homology spheres
using the results of [Mil19], and that the argument above can be recast in that language.

2.1. Detailed argument. Choose a metric on W which is cylindrical (identical to the
product metric) in a collar neighborhood of the boundary. We will consider instantons on
the complete Riemannian manifold W ∪∂W [0,∞)× ∂W , where we have attached infinite
cylindrical ends. By an abuse of notation, we ignore this subtlety and refer by the same
name W to both the compact manifold W and the version with cylindrical ends, as each
may be recovered from the other. By partitioning ∂W into a set of incoming ends and
outgoing ends, we may write that W : Y → Y ′ is a cobordism, where ∂W = Y ′ ⊔ −Y .

We are interested in SU(2)-connections A on the trivial bundle over W which are as-
ymptotic to a flat connection α over Y and a flat connection α′ over Y ′, and for which the
topological energy, defined as

κ(A) :=
1

8π2

∫
W

tr(FA ∧ FA),

is finite. This quantity is constant with respect to continuous deformations of A, and its
mod Z value is equal to CS(α)−CS(α′). (Taking Y ′ to be empty, this serves as a definition
of CS(α).)

Define the gauge group to be the space of all maps u : W → SU(2), regarded as
automorphisms of the trivial SU(2)-bundle, that are asymptotic to a map v : Y → SU(2)
on the incoming end and a map v′ : Y ′ → SU(2) on the outgoing end. Then we may pull
back any connection A as above with respect to u to obtain the connection u∗A that has
the same topological energy as A and is asymptotic to v∗α and (v′)∗α′ on the incoming and
the outgoing ends of W . The automorphisms u = ±I act trivially on A, and A is called
irreducible if these are the only elements of the stabilizer ΓA of A under the action of the
gauge group. The other possibilities for the isomorphism type of ΓA are U(1) and SU(2)
where A is called respectively an abelian and a central connection. For instance, the trivial
connection is a central connection. We use similar terminology to define the three types of
connections on 3-manifolds.
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Suppose W : Y → Y ′ is a cobordism. For any flat connections α, α′ on Y and any
real number κ, let Mκ(W ;α, α′) denote the moduli spaces of connections A on W with
topological energy κ that are asymptotic to α along the incoming ends and α′ along the
outgoing ends, and which satisfy the ASD equation

F+(A) = 0

with respect to the metric on W . Any solution A of the ASD equation satisfies

κ(A) = 8π2||FA||2L2 .

In particular, κ(A) ≥ 0, and κ(A) = 0 if and only if A is flat.
A special case of interest is when W = R × N for a connected 3-manifold N . For any

flat connections α, β on N and any non-negative κ with

κ ≡ CS(α)− CS(β) mod Z,

we have a moduli space Mκ(R × N ;α, β). Translation along the R factor determines an
action of R on this moduli space. This action is free if κ is positive, and the quotient in
this case is denoted by M̆κ(N ;α, β).

Next, we review some of the properties of the moduli spaces M̆κ(N ;α, β) in the case
that N is one of the 3-manifolds ±P , ±O with spherical metric. These manifolds lie
in the more general family of binary polyhedral spaces; their instanton moduli spaces are
studied in [Aus95], and the following lemma can be deduced from the general calculation
of [Aus95, Section 4.3]. See also the more recent work [Ola22] in this direction.

Lemma 2.4 ([Aus95]). If Y is a spherical 3-manifold, then M̆κ(Y ;α, β) are smooth man-
ifolds. We also have the following facts about flat connections and instantons over R× Y
for Y = ±O,±P .

(i) The manifold P supports three flat connections: the trivial connection θ and two
irreducible flat connections α1, α2 with CS-values 1

120 ,
49
120 respectively. The moduli

space M̆ 1
120

(P ;α1, θ) is a singleton.

(ii) Every other nonempty moduli space M̆κ(P ;α, β) has κ ≥ 2/5.

(iii) Every nonempty moduli space M̆κ(−P ;α, θ) has κ ≥ 71
120 .

(iv) Every nonempty moduli space M̆κ(±O;α, β) has κ ≥ 1
48 .

Proof. The claim about smoothness is proved in [Aus95, Section 4.5]; it follows from the
corresponding fact for instantons over S4. The flat connections and Chern–Simons values
on P are computed as in [FS90, Proposition 2.8] and [FS90, Theorem 3.7(3)].1 Item
(ii) follows from inspection of these Chern–Simons invariants, as does item (iii) because
CS−Y (α) = −CSY (α) and κ > 0 has κ ≡ CS(α)− CS(β).

1In comparing, Fintushel–Stern’s normalization of the Chern–Simons functional is four times ours;
though their function appears to be defined using the same formula, the factor of 4 arises because they use
SO(3)-connections, whereas we use SU(2)-connections.
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That the 0-dimensional component of M̆(P ;α1, θ) is a singleton follows from the com-
putation of [Aus95, Section 4.3],2 which also shows that this singleton descends from an
instanton on S4 over a bundle with c2 = 1, hence topological energy 1. Because topological
energy is multiplicative under covers and |π1(P )| = 120, item (i) follows.

Item (iv) was explained in the sketch of the proof above, and follows because S3 is a
48-fold cover of O. □

IfmP#−kO bounds a positive-definite manifold for somem > 0, then as in the sketch of
the proof we can construct a cobordism W : P → ⊔kO⊔m−1−P with b1(W ) = b+(W ) = 0;
glue cylindrical ends toW and fix a Riemannian metric onW compatible with the spherical
metrics on the ends. The proof of Proposition 2.1 will follow from an analysis of the
instanton moduli spaces on W . A standard reference for the study of the moduli spaces
of SU(2)-instantons on 4-manifolds with cylindrical ends is [Don02], which mostly focuses
on the case of 4-manifolds whose boundary components are integer homology spheres.
Since the flat connections on the boundary components of our 4-manifold W are either
irreducible or central, the results of [Don02] can be readily adapted to the present setup,
and we assume the reader has some basic familiarity with them.

The moduli spacesMκ(W ;α, α′) are not necessarily smooth anymore. However, the local
behavior of the moduli space around any instanton A is governed by the ASD operator
DA := d+A⊕d∗A : Ω1 → Ω+⊕Ω0 which is a Fredholm operator obtained as a combination of
the Coulomb gauge condition and linearizing the instanton equation at A [Don02, Chapter
3]. Moreover, the instanton equation can be perturbed by a holonomy perturbation π so
that the moduli space Mπ

κ (W ;α, α′) of solutions of the perturbed ASD equation

(2) F+(A) + π(A) = 0

is a smooth manifold away from reducible elements of the moduli space [Mil19, Theorem
4.37]. In fact, we can pick π so that the L2 norm of π(A) is less than a given positive con-
stant ϵ, the perturbation π(A) vanishes for any reducible connection A, and π(A) depends
on the restriction of A to a compact subspace of W . (See [Kro05, Section 3] for a review of
holonomy perturbations on 4-manifolds.) The dimension of the irreducible locus equals the
Fredholm index of DA where A is any connection on W that has topological energy κ and
is asymptotic to α and α′ on the cylindrical ends. Since b1(W ) = b+(W ) = 0, the moduli
space has a canonical orientation. (In general, one needs an orientation of the vector space
H1(W ;R)⊕H+(W ;R)∗ to orient the moduli spaces Mπ

κ (W ;α, α′).)

Lemma 2.5. There is a holonomy perturbation π for W such that the following holds.

(i) All irreducible π-instantons have surjective ASD operator, so that the irreducible
part of Mπ

κ (W ;α, α′) is a smooth manifold of dimension equal to the index of DA.
(ii) The moduli space Mπ

0 (W ; θ, θ′) of π-instantons with vanishing topological energy,
which are asymptotic to the trivial connections θ and θ′ on the incoming and the
outgoing ends of W , does not contain any irreducible.

2In comparing, our α1 is Austin’s Q, and our M̆(Y ;α, β) is Austin’s M̃(β, α).



3-MANIFOLDS WITHOUT ANY EMBEDDING IN SYMPLECTIC 4-MANIFOLDS 7

(iii) There is a one to one correspondence between the central elements of Mπ
0 (W ; θ, θ′)

and the homomorphisms H1(W ;Z) → Z/2 which are trivial on ∂W . For any such
central connection, the perturbed ASD operator is injective.

(iv) There is a one to one correspondence between the abelian elements of Mπ
0 (W ; θ, θ′)

and the free orbits of complex-conjugation on the space of homomorphisms H1(W ;Z) →
U(1) which are trivial on ∂W . For any such abelian connection, the perturbed ASD
operator is injective.

(v) All π-instantons on W have non-negative topological energy.

In particular, if a and b denote the number of central and abelian elements of Mπ
0 (W ; θ, θ′),

then a+ 2b is equal to the cardinality of H1(W ;Z)/H1(∂W ;Z).

Proof. A perturbation satisfying (i) is given in [Mil19, Theorem 4.37]. Because reducible
connections on a cobordism with b+(W ) = 0 are cut out transversely in the reducible
locus [Mil19, Lemma 4.20], the perturbation π(A) can be assumed to vanish when A is
reducible. It follows that the reducible elements of M0(W ; θ, θ′) coincide with the reducible
elements of Mπ

0 (W ; θ, θ′).
The index of the trivial connection is −3, so that the expected dimension of the irre-

ducible part of Mπ
0 (W ; θ, θ′) is −3, and hence the irreducible part of this moduli space is

empty, establishing (ii).
Because the reducibles in Mπ

0 (W ; θ, θ′) agree with those in M0(W ; θ, θ′), they correspond
to flat connections on W which are trivial on ∂W , hence conjugacy classes of homomor-
phisms π1(W ) → SU(2) that restrict to the trivial homomorphism on each boundary com-
ponent. Those homomorphisms with image in {±I} correspond to central connections,
for which the conjugation action is trivial; those homomorphisms with image conjugate to
a subgroup of U(1) correspond to abelian connections, for which the conjugation action
is the action of complex conjugation. Because homomorphisms from π1(W ) to an abelian
group factor through H1(W ;Z), this gives the enumeration of items (iii) and (iv). The con-
cluding enumeration follows because a+ 2b coincides with the number of homomorphisms
H1(W ;Z)/H1(∂W ;Z) → S1. Because H1(W ;Z) is a finite abelian group, Pontryagin du-
ality shows that this coincides with the number of elements of H1(W ;Z)/H1(∂W ;Z).

The central connection has injective ASD operator for the trivial perturbation, and hence
the same holds for a small perturbation π. That we may choose π so that this is also true
for abelian connections follows from the argument of [Mil19, Theorem 4.37] and the fact
that the normal index Ind(DA) + 1 + b+(W ) − b1(W ) is nonpositive (here, it is −2); see
also [CDX20, Section 7.3] for a similar discussion and conclusion.

It remains to verify the claim in (v), which follows from the assumption that π is small.
For any connection A we have

κ(A) =
1

8π2

∫
W

tr(FA ∧ FA) =
1

8π2

(
∥FA∥2L2 − 2∥F+

A ∥2L2

)
Thus for any solution of (2) we have κ(A) = 1

8π2

(
∥FA∥2L2 − 2∥π(A)∥2L2

)
.
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By taking π small enough, we can guarantee that κ(A) is greater than −ϵ for any fixed
positive constant ϵ. Since the mod Z value of κ(A) belongs to a fixed finite set, we obtain
(v) for a small enough value of ϵ. (In fact, ϵ = 1

240 will do.) □

Proof of Proposition 2.1. For the duration of this argument we write κ = 1
120 . For the

perturbation π constructed in Lemma 2.5, we consider the moduli space Mπ
κ (W ;α1, θ

′).
Since α1 is irreducible, all elements of this moduli space are irreducible, and Mπ

κ (W ;α1, θ
′)

is a smooth manifold. Gluing the connection B ∈ M̆κ(P ;α1, θ) to the trivial connection Θ
onW determines a connection A onW asymptotic to α1 at−∞ and the trivial connection θ′

at +∞; by additivity of topological energy, κ(A) = 1
120 . By additivity of ASD index [Don02,

Chapter 3], we have

ind(D+
A) = ind(D+

B) + ind(D+
Θ) + dim(Γθ)

= 1 + (−3) + 3 = 1.

Thus Mπ
κ (W ;α1, θ

′) is an oriented 1-dimensional smooth manifold.
Next, we study the ends of the 1-dimensional manifold Mπ

κ (W ;α1, θ
′) using the standard

compactification and gluing theory results in Yang–Mills gauge theory. Since 1
120 < 1,

there is no room for bubbling. Thus the only source of non-compactness is the possibility
of energy sliding off the ends of W , in two possible ways:

(i) Energy could slide off the incoming end, corresponding to gluing an instanton
α → β over R× P to a π-instanton β → θ′ over W .

(ii) Energy could slide off one of the outgoing ends, corresponding to gluing a π-
instanton α → β′ over W to an instanton β′ → θ over R×−P or R×±O.

However, Lemma 2.4 and additivity of topological energy imply that the only possibility
is case (i), where β = θ. It follows that if [Ai] is a sequence in Mπ

κ (W ;α1, θ
′) without

any convergent subsequence, then this sequence is chain convergent to [B,A] in the sense

of [Don02, Chapter 5] where [B] is the element of M̆κ(P ;α1, θ) and [A] ∈ Mπ
0 (W ; θ, θ′).

Now the same argument as in [Don87] shows that for any abelian (resp. central) [A] ∈
Mπ

0 (W ; θ, θ′), the pair [A,B] contributes two ends (resp. one end) to the moduli space
Mπ

κ (W ;α1, θ
′), and all of these ends have the same orientation. (See also [Dae20, Section

4.2] for a similar discussion.) By the conclusion of Lemma 2.5, we see that this gives as
many ends of Mπ

κ (W ;α1, θ
′) as there are elements of H1(W,Z)/H1(∂W ;Z), all of which

are oriented in the same direction. As every oriented 1-manifold with finitely many ends
has zero ends when counted with sign, this is a contradiction; there is no positive-definite
4-manifold with boundary mP#− kO where m > 0. □
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