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Abstract. In this paper, Floer homology for Lagrangian submanifolds in an open
symplectic manifold given as the complement of a smooth divisor is discussed. The
main new feature of this construction is that we do not make any assumption on pos-
itivity or negativity of the divisor. To achieve this goal, we use a compactification of
the moduli space of pseudo-holomorphic discs into the divisor complement satisfying
Lagrangian boundary condition that is stronger than the stable map compactification
and is inspired by the compactifications that are used in relative Gromov–Witten the-
ory. This is the first of a series of three papers, this compactification is introduced and
some of its fundamental properties as a topological space, essential for the definition
of Lagrangian Floer homology, are established.
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1. Introduction

Lagrangian Floer theory plays a central role in recent developments in symplectic
topology; it has been used to study symplectic rigidity of Lagrangain submanifolds
[ALP94] and it lies at the heart of the homological mirror symmetry program [Kon95b].
This theory associates a homology group to a pair of Lagrangians in a symplectic mani-
fold. In order to define this invariant, one needs to make some restrictive assumptions on
the Lagrangians and the underlying symplectic manifold. Hence, there are various fla-
vors of Lagrangian Floer homology in the literature [Flo88,Oh93,FOOO09a,FOOO09b,
AJ10].

In this paper, we study Floer homology for Lagrangians in open symplectic manifolds
obtained by removing a divisor from a closed symplectic manifold. The novelty of
our construction is that we do not make any convexity assumption about the ends of
such open manifolds. The main application that we have in mind is in gauge theory.
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Motivated by [MW12], we are planning to use the construction of the present article
and its subsequents to define symplectic instanton Floer homology for arbitrary UpNq-
bundles over 3-manifolds. As it is discussed in the last section of [DF18c], it is plausible
that the construction of this paper can be useful in various other contexts.

1.1. Statement of Results. Let pX,ωq be a compact symplectic manifold and D be
a codimension two symplectic submanifold of X. We call any such submanifold D of X
a smooth divisor in pX,ωq.

Definition 1.1. Let L be a compact Lagrangian submanifold of XzD. We say L is
monotone in XzD, if there exists c ą 0 such that the following holds for any β P

Impπ2pXzD, Lq Ñ π2pX,Lqq:
ωpβq “ cµpβq.

Here µ : H2pX,L;Zq Ñ Z is the Maslov index associated to the Lagrangian submanifold
L. (See, for example, [FOOO15, Subsection 2.1.1].) The minimal Maslov number of a
Lagrangian L in XzD is defined to be:

inftµpβq | β P Impπ2pXzD, Lq Ñ π2pX,Lqq, ωpβq ą 0u.

Definition 1.2. Let L0, L1 be compact subspaces of XzD. We say L0 is Hamiltonian
isotopic to L1 in XzD if there exists a compactly supported time dependent Hamiltonian
H : pXzDq ˆ r0, 1s Ñ R such that the Hamiltonian diffeomorphism ψH : XzD Ñ XzD
maps L0 to L1. Here ψH is defined as follows. Let Htpxq “ Hpx, tq and XHt be the
Hamiltonian vector field associated to Ht. We define ψHt by

ψH0 pxq “ x,
d

dt
ψHt “ XHt ˝ ψ

H
t .

Then ψH :“ ψH1 . We say that ψH is the Hamiltonian diffeomorphism associated to the
(non-autonomous) Hamiltonian H.

The main result of this series of papers is the following.

Theorem 1. Let L0, L1 Ă XzD be compact, oriented and spin Lagrangian submanifolds
such that they are monotone in XzD. Suppose one of the following conditions holds:

(a) The minimal Maslov numbers of L0 and of L1 are both strictly greater than 2.
(b) L1 is Hamiltonian isotopic to L0.

Then there is a Floer homology group HF pL1, L0;XzDq, which is a vector space over a
Novikov ring depending only on the Hamiltonian isotopy classes of L0 and L1. If L0 is
transversal to L1 then we have:

dimpHF pL1, L0;XzDqq ď #pL0 X L1q.

and if L0 “ L1 “ L, then there exists a spectral sequence whose E2 page is the singular
homology group of L and which converges to HF pL,L;XzDq.

See [DF18c] for a more detailed and slightly stronger version of this theorem.
In [Flo88], Floer proved the analogue of Theorem 1 in the case that π2pX,Liq “ 0 and

the coefficient ring is Z{2Z. In this case, the analogue of the spectral sequence for the
Floer homology of the pair pL,Lq collapses in the second page and the Floer homology is
isomorphic to singular homology of L [Flo88,Flo89]. Oh generalizes Floer’s construction
to the case that L0 and L1 are monotone in X [Oh93]. He also constructed a spectral
sequence from the homology of L to the Lagrangian Floer homology of the pair pL,Lq
in [Oh96]. (See also [FOOO09a, Chapter 2] and [BC09].).

The main new feature of Theorem 1 is that we assume monotonicity of L0 and L1 only
in XzD. Roughly speaking, the Floer homology HF pL1, L0;XzDq is defined using only
holomorphic disks which ‘do not intersect’ D. Therefore, Theorem 1 can be regarded
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as an extension of Oh’s monotone Floer homology [Oh93] to open manifolds where the
geometry at infinity is controlled by a smooth divisor. As we mentioned earlier, this
extension of Floer homology is partly motivated by monotone Lagrangian submanifolds
in divisor complements which are constructed by gauge theory [MW12,DF18a].

There are various other special cases of Theorem 1 which already appear in the liter-
ature. In the case that XzD is convex at infinity, the methods of [FOOO09a,FOOO09b]
can be used to define a Floer homology group HF pL1, L0;XzDq satisfying the properties
mentioned in Theorem 1. In particular, this setup can be applied to the case that each
component of D is a positive multiple of the Poincaré dual of rωs, the cohomology class
of the symplectic form. Starting with the remarkable work of Seidel [Sei02,Sei15], such
Floer homology groups have been used to study Fukaya category of X and to verify
homological mirror symmetry for some special examples.

As in any other versions of Lagrangian Floer homology, the main geometrical input
in the definition of the Floer homology of Theorem 1 is the moduli space of holomor-
phic maps from the standard disc to X (equipped with appropriate almost complex
structures), which satisfy Lagrangian boundary conditions. There is a standard com-
pactification of this moduli space called the stable map compactifiaction, which plays an
essential role in the definition of previous versions of Lagrangian Floer homology. This
compactification, however, is not suitable for our purposes.

A key observation for this series of papers is that this issue can be resolved by a
different and stronger compatification of the above moduli space of holomorphic discs,
which we we call RGW compactification. The definition of this compatctification is
inspired by the theory of Relative Gromov–Witten invariants, where one uses the moduli
spaces of holomorphic maps from a closed surface to X, which intersect a divisor D in
a prescribed way, to construct numerical invariants of pX,Dq. There are also formal
similarities between the RGW compactification and the compactification of the moduli
spaces used in symplectic field theory.

In Section 2 of the present paper, we explain in more detail why stable map compacti-
fiaction comes short for our purposes, and how our work is related to several approaches
to Relative Gromov–Witten theory. The definition of RGW compactification as a set is
given in Section 3, and in Section 4 after defining the topology of this set we prove the
compactness of this topological space. In our second paper of this series [DF18b], we
study the analytical features of the RGW compactification. In particular, we show that
this space admits a Kuranishi structure with boundary and corners. We believe that the
analytical methods of [DF18b] provide an approach to address some of the foundational
questions for relative Gromov-Witten invariants for a pair of a symplectic manifold and
a smooth divisor. In the third paper [DF18c], we use the results of the present paper
and [DF18b] to prove Theorem 1.

Acknowledgements. We thank Paul Seidel, Mark Gross, Mohammad Tehrani and
Aleksey Zinger for helpful conversations. We also thank the anonymous referee for
giving several helpful comments on an earlier version of this series of papers. We are
grateful to the Simons Center for Geometry and Physics for providing a stimulating
environment for our collaboration on this project.

2. Main idea of the construction

Suppose pX,ωq is a closed symplectic manifold. Any flavor of Lagrangian Floer ho-
mology of two Lagrangians L0 and L1 in a symplectic manifold pX,ωq is defined using
holomorphic strips into X satisfying Lagrangian boundary conditions where the holo-
morphic curve equation is defined with respect to a tame almost complex structure J
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on X. To be more specific, let p, q P L0 X L1, and consider maps

u : Rˆ r0, 1s Ñ X

that are J-holomorphic and

(2.1) upτ, 0q P L0, upτ, 1q P L1, lim
τÑ´8

upτ, tq “ p, lim
τÑ`8

upτ, tq “ q.

Any such map represents a homology class in the following sense.

Definition 2.2. We say (not necessarily holomorphic) maps u, u1 : R ˆ r0, 1s Ñ X
satisfying (2.1) are homologous to each other if there exists v : Σ Ñ X with the following
properties.

(1) Σ is an oriented 3 dimensional manifold with corners. BΣ is identified with
pRˆr0, 1sˆt0, 1uqYS0YS1, where BS0 – Rˆt0uˆt0, 1u and BS1 – Rˆt1uˆt0, 1u.

(2) v : Σ Ñ X is a continuous map.
(3) vpτ, t, 0q “ upτ, tq and vpτ, t, 1q “ u1pτ, tq.
(4) vpS0q Ă L0, vpS1q Ă L1.
(5) Complement of a compact subspace of Σ is identified with pp´8,´Csˆr0, 1s2qY

prC,8q ˆ r0, 1s2q and

lim
τÑ´8

vpτ, xq “ p, lim
τÑ`8

vpτ, xq “ q.

The set of such homology classes is denoted by Π2pX;L1, L0; p, qq.

For β P Π2pX;L1, L0; p, qq, we define MregpL1, L0; p, q;βq to be the set of all equiva-
lence classes of J-holomorphic maps u : Rˆr0, 1s Ñ X satisfying (2.1) and representing
β with respect to the equivalence relation given by translation along the R factor of
Rˆ r0, 1s. Namely, u „ u1, if there exists τ0 such that u1pτ, tq “ upτ ` τ0, tq.

The Lagrangian Floer homology group HF pL1, L0;Xq is the homology of a chain
complex pCF pL1, L0q, Bq where CF pL1, L0q is the vector space generated by the elements
of L0 X L1 and B : CF pL1, L0q Ñ CF pL1, L0q is defined as

(2.3) Bprpsq “
ÿ

q,β

#MregpL1, L0; p, q;βqrqs.

Here the sum on the right hand side is taken over all pq, βq such that the virtual dimension
of MregpL1, L0; p, q;βq is 0.

As the next step, moduli spaces MregpL1, L0; p, q;βq of virtual dimension 1 are used
to show that B is a differential. In fact, one first compactifies these moduli spaces and
then characterizes the coefficient of rqs in B ˝ Bprpsq in terms of the boundary points of
the compactified moduli spaces. The foundational issue is that one should also expect
other contributions to the boundary of the moduli spaces in correspondence to the disc
bubbles.

To spell this out in more detail, we need to consider other types of moduli spaces
of holomorphic curves. First let Mreg

0,1pL1, L0; p, q;βq and Mreg
1,0pL1, L0; p, q;βq be the

J-holomorphic maps u : Rˆ r0, 1s Ñ X satisfying (2.1) and representing β. Thus these
spaces agree with each other and their quotient with respect to the translation action is
MregpL1, L0; p, q;βq. We define the evaluation maps ev0,1 : Mreg

0,1pL1, L0; p, q;βq Ñ L0

and ev1,0 : Mreg
1,0pL1, L0; p, q;βq Ñ L1 by

ev0,1puq “ up0, 0q, ev1,0puq “ up0, 1q.

The set Mreg
0,1pL1, L0; p, q;βq can be regarded as the moduli space of marked holo-

morphic strips pu, z0q modulo the translation action where z0 is a marked point on
Rˆt0u. Any such marked strip has a unique representative where z0 “ p0, 0q. Similarly,
Mreg

1,0pL1, L0; p, q;βq can be regarded as a moduli space of marked strips pu, z1q modulo
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the translation action where z1 is a marked point on Rˆt1u. See Definition 3.80 for the
generalization where we allow more marked points on Rˆ t0u and Rˆ t1u.

For any α in the image Π2pX,L;Zq of the Hurewicz homomorphism π2pX,Lq Ñ
H2pX,L;Zq, we define Mreg

1 pL;αq to be the set of all equivalence classes of J-holomorphic
maps maps u : pD2, BD2q Ñ pX,Lq in the homotopy class α, where u „ u1 if there exists
a bi-holomorphic map v : D2 Ñ D2 such that u ˝ v “ u1 and vp1q “ 1. We also define
the evaluation map ev : Mreg

1 pL;αq Ñ L by evpuq “ up1q. When the choice of L is clear
from the context, we write Mreg

1 pαq for Mreg
1 pL;αq.

There is a topology, called the stable map topology, on the spaces

(2.4) MregpL1, L0; p, q;βq, Mreg
0,1pL1, L0; p, q;βq, Mreg

1,0pL1, L0; p, q;βq, Mreg
1 pL;αq.

See Subsection 4.1 for a review of the stable map topology. There are also compactifi-
cations of these topological spaces denoted by

(2.5) MpL1, L0; p, q;βq, M0,1pL1, L0; p, q;βq, M1,0pL1, L0; p, q;βq, M1pL;αq.

These compactifications are metrizable. The evaluation maps ev naturally extends to
maps to the compactified spaces. We use the same notation to denote these extensions.

In the compactification MpL1, L0; p, q;βq of MregpL1, L0; p, q;βq we add J-holomorphic
maps where disc and sphere bubbles and broken strips are allowed. In particular, in-
cluded in this compactification we can identify three types of boundary points. The first
type corresponds to the products

(2.6) MpL1, L0; p, r;β1q ˆMpL1, L0; r, q;β2q,

where r P L0 X L1, β1 P Π2pL1, L0; p, rq and β2 P Π2pL1, L0; r, qq such that β1#β2 “ β.
Here # denotes the concatenation maps

Π2pX;L1, L0; p, rq ˆΠ2pX;L1, L0; r, qq Ñ Π2pX;L1, L0; p, qq.

The second and the third types correspond to

(2.7) M0,1pL1, L0; p, q;β0qˆL0M1pL0;α0q, M1,0pL1, L0; p, q;β1qˆL1M1pL1;α1q,

where β0, β1 P Π2pL1, L0; p, qq, α0 P Π2pX,L0;Zq and α1 P Π2pX,L0;Zq satisfy β0#α0 “

β and β1#α1 “ β. Here we use the concatenation maps

(2.8)
# : Π2pX;L1, L0; p, qq ˆΠ2pX;L0,Zq Ñ Π2pX;L1, L0; p, qq,

# : Π2pX;L1, L0; p, qq ˆΠ2pX;L1,Zq Ñ Π2pX;L1, L0; p, qq.

See Figures 1, 2 and 3 for schematic pictures of the three types of boundary points.

L1

L0
p qr

β1 β2

Figure 1. A boundary element of type (1)

In order to use the above moduli spaces in the construction of Lagrangian Floer
homology, we need some sort of smooth structures on them. A general approach to
achieve this is to show that there is a structure of a Kuranishi structure on any of
these moduli spaces. Roughly speaking, a Kuranishi strcuture on a topological space M
implies that M is locally homeomorphic to the zero set of a smooth map defined on a
manifold (or more generally an orbifold), and the transition maps between such charts
are well-behaved with respect to this structure. All of the moduli spaces in (2.5) admit
Kuranishi structures with boundary and corners. In the case of MpL1, L0; p, q;βq, the
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p
q

L0

L1

β

α

Figure 2. A boundary element of type (2)

p
q

L0

L1

β

α

Figure 3. A boundary element of type (3)

(normalized) boundary1 of this space as a Kuranishi space is the union of the three
types of Kuranishi spaces given in (2.6) and (2.7). Moreover, if the above Lagrangians
are (relatively) spin, then all of the above Kuranishi structures are orientable. See
[FOOO09b] for the proofs of the above claims.

Now, we turn back to showing that the operator B in (2.3) is a differential of a chain
complex. The count of boundary elements of the first type in (2.6) gives the coefficient
of rqs in B˝Bprpsq. Since the signed count of the boundary elements of a Kuranishi space
of dimension 1 is zero, this implies that B ˝ B “ 0, assuming the boundary elements of
the second the third types in (2.7) are empty. However, this does not happen in general
and B might not be a differential. In the special case that L0, L1 are monotone in X
with minimal Maslov number greater than 2, the contribution of the boundary points in
(2.7) is trivial. This gives rise to the Oh’s construction of Floer homology of monotone
Lagrangians [Oh93].

In order to prove Theorem 1 where the Lagrangians Li are monotone only in XzD,
we may try to restrict β to the classes which satisfy the following additional condition.

Condition 2.9. We say α P Π2pX,Lq has vanishing algebraic intersection with D, if

(2.10) rαs ¨D “ 0.

Similarly, β P Π2pX;L1, L0; p, qq has vanishing algebraic intersection with D, if

(2.11) rβs ¨D “ 0.

In the definition of (2.3), suppose we only use homology classes β P Π2pX;L1, L0; p, qq
satisfying Condition 2.9. Then we might hope that the monotonicity of L0, L1 in XzD
allows us to repeat Oh’s argument and avoid boundary elements of the second and the
third types in (2.7). This idea, however, does not work in general. Suppose β has

1See [FOOO15, Definition 8.4] for the definition of normalized boundary.
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vanishing algebraic intersection with D, and MpL1, L0; p, q;βq has virtual dimension 1.
Then this space could have boundary elements of the first type as in (2.6) associated to
homology classes β1, β2 such that β1#β2 “ β, rβ1s ¨D ă 0 and rβ2s ¨D ą 0. (See Figure
4 below.) Therefore, we would face again with a similar issue to show that B ˝ B “ 0.
(See Figure 4 below.)

L1

L0
p qr

+1

−1

D

Figure 4. Monotonicity is broken

The arrangement in Figure 4 can be avoided by picking an appropriate almost complex
structures onX. For instance, if J is integrable in a neighboohod of D and D is a complex
submanifold, then any J-holomorphic curve has a positive intersection with D, which
implies the claim in the following lemma. (See Subsection 3.2 for a more flexible family
of almost complex structures on X that satisfy a similar property.)

Lemma 2.12. Suppose the almost complex structure J on X is integrable in a neigh-
boohod of D. If MregpL1, L0; p, q;βq (resp. Mreg

1 pL;αq) is nonempty, then β ¨ D ě 0
(resp. α ¨D ě 0).

L1

L0
p qr

+1
+1

−2 0

β1
β2

Figure 5. Monotonicity is broken: 2

Even if J satisfies the assumption in Lemma 2.12, we may still have an arrangement
as in Figure 5 that causes the issue we raised above. In Figure 5 two sphere bubbles are
completely contained in the divisor D. The numbers 0 and ´2 written at the top of the
sphere components are the intersection numbers of those sphere bubbles with D. (Note
that under the assumption in Lemma 2.12, the intersection numbers can be nonpositive
only when the spheres are contained in the divisor.) The two strips (joining p to r and
r to q) intersect with D at the roots of the sphere bubbles. The intersection number
of the strips with D are both `1 as drawn in the figure. (This number is necessarily
positive because of Lemma 2.12.) In this case, β1 and β2 are homology classes of the
strips together with sphere bubbles on them. Therefore, β1 ¨ rDs “ ´1 and β2 ¨ rDs “ `1.
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The key idea to resolve this issue is to replace stable map topology with a stronger
topology, called RGW topology. The main issue with the stable map compactification
(and its Kuranishi structure) is its insensitivity with respect to the assumption that D is
a divisor and the almost complex structure J has a special behavior in a neighborhood of
this submanifold of X. The compactified moduli spaces with respect to RGW topology
admit Kuranishi structures that take into account the special geometry of X around the
divisor D. In particular, an analogue of Lemma 2.12 is built into the definition of the
RGW topology. In the rest of this paper, we introduce the RGW topology and discuss the
compactification of the moduli spaces with respect to this topology. Kuranishi structures
on these moduli spaces are constructed in [DF18b,DF18c] and then we explain there how
we can use the monotonicity of Li in XzD to adapt Oh’s argument to prove Theorem 1.

Before closing this section, we explain how the method of this paper compares with the
existing works on relative Gromov–Witten invariants. Relative Gromov-Witten theory
provides invariants of a pair pX,Dq of a symplectic manifold together with a divisor
using the moduli spaces of pseudo-holomorphic curves u from a Riemann surface of
surface Σg with k marked points tw1, . . . , wku Ă Σg into X such that u´1pDq is equal to
tw1, . . . , wku and the multiplicity of the intersection of u at the point wi with the divisor
D is a fixed positive integer mi. (More generally, one can consider the case that D is a
normal crossing divisor.) One can approach this theory with the methods of algebraic
geometry (assuming integrability of the pair pX,Dq) and symplectic geometry. On the
algebro-geometric side, such a theory is developed and studied in J. Li [Li01, Li02],
Gross and Siebert [GS13] and others. In the category of symplectic manifolds, relative
Gromov-Witten invariants were defined in several works under various assumptions in
the works of Li and Ruan [LR01], Ionel and T. Parker [IP03, IP04], B. Parker [Par12,
Par15,Par19a,Par13,Par19b], Tehrani and Zinger [TZ16] and Tehrani [Teh22]. (See also
[Teh13] on open Gromov-Witten invariants.) A review of some of these works can be
found in [TZ14].

As it was mentioned in the introduction, relative Gromov-Witten theory is an impor-
tant source of inspiration for parts of our construction. In particular, the basic idea of
the notion of RGW topology and its compactification already appears in [IP03, Proposi-
tion 7.3], [Par15, Theorem 6.1] and [Teh22, Definition 3.7]. However, we decided to give
a self-contained review of the definition of the RGW compactification and the RGW
topology on this space in our present setup. One reason is that the above works on rela-
tive Gromov-Witten invariants concern moduli of pseudo-holomorphic maps from source
curves that have empty boundary. In the case of pseudo-holomorphic curves satisfying
Lagrangian boundary condition on the boundary of the source curve, several new points
about our moduli spaces need to be further studied. For instance, our construction of
Floer theory requires an explicit understanding of codimension one boundary, where
there is a new feature in our situation which does not appear in the previous works on
Lagrangian Floer theory (see [DF18c, Subsection 2.2] for more details).

In order to construct the version of Floer homology promised in Theorem 1, we use
virtual fundamental chain techniques. In the case of relative Gromov-Witten theory, the
relevant moduli spaces are expected to be manifolds without boundary (more precisely
Kuranishi spaces without boundary), and one needs to associate a virtual fundamental
cycle to any of them. On the other hand, the moduli spaces relevant for us are expected
to have boundary and hence the construction of virtual fundamental chains in this setup
would be a more delicate task. To achieve this goal, we need a detailed description of
the strata of the RGW compactification. In Section 3, we use some combinatorial data
in the form of graphs with additional decorations to give such descriptions.

To the best of our understanding, a detailed construction of virtual fundamental
cycles for relative Gromov-Witten invariants in the symplectic category (without any
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semi-positivity assumption on the divisor) appears only in the works of B. Parker on
exploded manifolds. Parker constructs such virtual fundamental cycles using techniques
from toric geometry and sheaf theory. It seems reasonable to expect that one can
approach the construction of the virtual fundamental chains required for the proof of
Theorem 1 from the same approach.

3. RGW Compactification of the Moduli Space of Disks and Strips in XzD
As we explained in the last section, the stable map compactification is not suitable

for the proof of Theorem 1. In this section, we start the task of defining the alternative
RGW compactification. In particular, we define the sets

(3.1)
MRGWpL1, L0; p, q;βq, MRGW

0,1 pL1, L0; p, q;βq,

MRGW
1,0 pL1, L0; p, q;βq, MRGW

1 pL;αq.

that contain the spaces in (2.4). In the next section, we define a topology on this sets
that agree with the standard topology on the subspaces given in (2.4). Moreover, we
shall show that the spaces in (3.1) are compact and metrizable.

Remark 3.2. In [DF18b, DF18c], we show that the RGW compactifications admit Ku-
ranishi structures. Moreover, the normalized boundary of MRGWpL1, L0; p, q;βq can be
split into three types similar to (but not exactly in the same way as in) the case of the
stable compactification of moduli spaces of holomorphic strips into a compact symplectic
manifold, which was reviewed in the previous section.

Remark 3.3. We do not need the monotonicity assumption to prove the above claims
(including the existence of Kuranishin structures) about the spaces in (3.1). We use the
monotonicity to derive Theorem 1 from the above claims on the structure of the spaces
in (3.1).

3.1. Partial C˚-actions and divisors. Given a smooth divisor D in X, there is a
partially defined C˚ action in a regular neighborhood of D. This action plays a central
role in our construction of the RGW compactification. So we take a moment to formalize
the notion of a partial C˚ action on a manifold with an almost complex structure.

Definition 3.4. Let pY, Jq be an almost complex manifold and D a codimension 2
submanifold of Y . A partial C˚ action on pY,Dq is a pair pU ,mq where:

(1) U is an open neighborhood of CˆD in Cˆ Y .
(2) m : U Ñ Y is a smooth map. For pc, pq P U we write c ¨ p for mpc, pq. We say

c ¨ p is defined if pc, pq P U .
(3) If c2 ¨ p and c1c2 ¨ p are defined, then c1 ¨ pc2 ¨ pq is also defined and is equal to

c1c2 ¨ p.
(4) If c ¨ p is defined and c ‰ 0, then c´1 ¨ pc ¨ pq is defined and is p.
(5) If p P D, then for any c, c ¨ p is defined and is equal to p .
(6) If 0 ¨ p is defined, then 0 ¨ p P D.
(7) For c ‰ 0, the map p ÞÑ c ¨ p preserves almost complex structure on the domain

where it is defined.

Definition 3.5. Let D be an almost complex manifold and π : LÑ D be a complex line
bundle over D. Suppose also θ P Ω1pLq is a connection 1-form on L. Then for any p P L,
the horizontal subspace Hp :“ kerpθpq of TpL can be equipped with a complex structure
by requiring that the derivative of π is complex linear as an isomorphism from Hp to
TπppqD. Thus we obtain a complex structure J on L by requiring that the tangent space
to the fiber at p with its standard complex structure and Hp are complex subspaces of
TpL. With respect to this complex structure, scaling in the fiber direction provides a
partial C˚ action on pL,Dq in the sense of Definition 3.4.
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Example 3.6. We can generalize Definition 3.5 in the following way. Let Y be an
almost complex submanifold and D be a codimension 2 submanifold of Y such that for
a neighborhood U of D there is a map Φ : U Ñ L that is a diffeomorphism into its
image preserving the almost complex structures and the restriction of Φ to D Ă U is the
identity map into the zero section of L. Then we may pull back the partial C˚ action
on pL,Dq to obtain a partial C˚ action on pY,Dq.

Now suppose pL, Jq be as in Definition 3.5 and u : pΣ, jq Ñ pL, Jq be a pseudo-
holomorphic map from a Riemann surface to L. Thus v :“ π˝u is a pseudo-holomorphic
map into D, and θu :“ v˚θ defines a connection on the pulled back bundle Lu :“ v˚L.
Applying Definition 3.5 to Lu and θu determines a complex structure Ju on the total
space of Lu. The map u induces a section su : Σ Ñ Lu that is pseudo-holomorphic
with respect to j and Ju. We may also use the p0, 1q component Bθ of θv to define a
holomorphic structure on Lu: a local holomorphic section of Lu is given by a solution
of Bθv “ 0. Since Σ is a Riemann surface, there is no integrability obstruction to solve
this equation to find local holomorphic charts for Lu. The connection θu with respect to
a holomorphic chart for Lu over some open subspace V of Σ has the form d` α where
α P Ωp1,0qpV q. In particular, the underlying complex structure on the holomorphic
bundle Lu agrees with Ju, and su is a holomorphic section of Lu. We summarize this
discussion in the following lemma.

Lemma 3.7. Suppose pL, Jq is given as in Definition 3.5. For any pseudo-holomorphic
map u : pΣ, jq Ñ pL, Jq, the induced section su of the line bundle Lu over Σ is holomor-
phic.

3.2. Symplectic and Complex Structures on a Projective Space Bundle. We
turn back to our setup where D is a divisor in pX,ωq. In this subsection, we determine
almost complex structures that are used in our main construction. Let ωD denote the
induced symplectic structure on D, and let NDpXq be the normal bundle of D in X. Fix
an ωD-compatible almost complex structure JD on D. Fix a compatible almost structure
on the symplectic vector bundle NDpXq to turn it into a Hermitian line bundle. Let
also θ be a Up1q-connection on NDpXq. Then Definition 3.5 allows us to fix a complex
structure on NDpXq.

One of the ingredients of our RGW compactification are pseudo-holomorphic maps
into the projective bundle PpNDpXq ‘ Cq. This space consists of equivalence classes
of pa, bq P pNDpXq ˆ CqzD ˆ t0u such that pa, bq „ pa1, b1q if there exists λ P C˚ with
pa, bq “ pλa1, λb1q. This space is a P1-bundle, which determines a compactification of the
normal bundle NDpXq Ñ D. The complex structure on NDpXq determines an almost
complex structure JP on PpNDpXq ‘ Cq. There is an action of C˚ on PpNDpXq ‘ Cq
where λ P C maps the equivalence class ra, bs to rλa, bs. The complex structure JP is
invariant with respect to the action of C˚.

We also fix a symplectic structure on PpNDpXq ‘ Cq, invariant with respect to the
action of S1 Ă C˚. Let ϕ : r0,8q Ñ r0, 2q be a smooth function satisfying the following
properties:

(i) ϕprq “ r2

2 for r P r0, 1s;

(ii) ϕprq “ 2´ 1
r for r P r2,8q;

(iii) ϕ1prq ą 0.

The Hermitian structure on NDpXq determines a length function r : NDpXq Ñ r0,8q.
The exact 2-form dpϕprqθq on NDpXqzD extends to a smooth closed 2-form on the
projective bundle PpNDpXq ‘ Cq which is S1-invariant and whose restriction to each
P1-fiber is a volume form. Therefore, if K is a large enough constant, then the following
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form defines an S1-invariant symplectic form on PpNDpXq ‘ Cq:

ωP :“ π˚ωD `
1

K
dpϕprqθq.

By choosing K large enough, we may also assume that JP is tame with respect to ω.
Darboux’s Theorem for symplectic submanifolds implies that there is a symplectomor-

phism Φ from a neighborhood of the zero section in PpNDpXq‘Cq to a neighborhood of
D in X that restricts to the identity map on the zero section [MS98, Theorem 3.30]. We
use one such symplectomorphism to push forward JP to a tame almost complex struc-
ture on a neighborhood of D in X. Then we extend this almost complex structure into
a tame almost complex structure J on X. With this choice of almost complex structure
on X, there is a partial C˚ action on pX,Dq. The moduli spaces of pseudo-holomorphic
curves in X and PpNDpXq ‘ Cq in the rest of the paper are defined with respect to J
and JP. The following lemma about such pseudo-holomorphic curves is crucial for our
construction.

Lemma 3.8. Suppose u : pΣ, jq Ñ pX, Jq is a pseudo-holomorphic curve. Then the
multiplicity of any intersection point of u and D is a positive integer. A similar claim
holds if pX, Jq is replaced with pPpNDpXq ‘ C,D0 Y D8q where D0 and D8 are given
by the sections at zero and infinity.

Proof. It suffices to consider the pseudo-holomorphic maps u that are mapped to a
tubular neighborhood of D where the almost complex structure has the form given in
Definition 3.5. In this case, the claim follows from Lemma 3.7 and the corresponding
positivity result in the holomorphic category. �

Remark 3.9. The almost complex structures J and JP depend on JD, the compatible
complex structure on the symplectic vector bundle NDpXq, the connection θ, the sym-
plectomorphism Φ and the extension of Φ˚pJDq into a tame almost complex structure
on X. The space of all such choices has trivial homotopy groups. This fact will be used
in [DF18c] to show that our version of Lagrangian Floer homology does not depend on
the choices of almost complex structures.

Remark 3.10. We use the partial C˚ action on pX,Dq in the definition of the RGW
topology and the gluing analysis. To carry this out, it is important for us that our
almost complex structure is invariant with respect to this partial C˚ action. We believe
that a similar construction can be carried out for a slightly more general family of
almost complex structures at the expense of more work on the analysis part. In fact, it
is reasonable to expect that similar assumptions on almost complex structures as in the
literature on relative Gromov-Witten theory, where one does not require invariance with
respect to a partial C˚ action, would be sufficient for our purposes. For instance, [IP03]
works with almost complex structures that satisfy an infinitesimal integrability in the
normal direction to D, and D is an almost complex submanifold [IP03, Definition 3.2].
The almost complex structure J constructed above satisfies these conditions. On the
other hand, integrable almost complex structures are often not invariant with respect
to any partial C˚ action, but still fits into the framework of [IP03, Definition 3.2]. Since
we do not gain anything from working in such generality and the analytical aspects of
partially C˚-invariant almost complex structures are simpler, we content ourselves with
this more restricted family of almost complex structures.

3.3. RGW Compactification in a Neighborhood of the Divisor. Fix non-zero
integers m0,m1, . . . ,m` P Zzt0u and let m “ pm0,m1, . . . ,m`q. Let also Π2pDq “
Impπ2pDq Ñ H2pDqq. For α P Π2pD;Zq, the moduli space M0pD Ă X;α; mq is defined
as follows:
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Definition 3.11. An element of M0pD Ă X;α; mq is an isomorphism class of a triple
ppΣ, ~wq;u; sq with the following properties:

(1) pΣ, ~wq is a nodal curve of genus zero with `` 1 marked points ~w “ pw0, . . . , w`q.
The marked points wi are not nodal points.

(2) u : Σ Ñ D is a holomorphic map representing the homology class α.
(3) s is a section of u˚NDpXq on Σz~w and is extended to a meromorphic section on

Σ.
(4) For i “ 0, 1, . . . , `, the section s has a zero of multiplicity mi at wi if mi ą 0, and

it has a pole of multiplicity ´mi at wi if mi ă 0. s is nonzero on Σztw0, . . . , w`u.
(5) The stability condition defined in Definition 3.13 holds.

The definition of isomorphism between two such elements are given in Definition 3.12.

Definition 3.12. Let x “ ppΣ, ~wq;u; sq and x1 “ ppΣ1, ~w 1q;u1; s1q be as in Definition
3.11. An isomorphism from x to x1 is a pair pv, cq such that:

(1) v : Σ Ñ Σ1 is a biholomorphic map such that u1 ˝ v “ u,
(2) c is a nonzero complex number such that s1 ˝ v “ cs.

We say x is isomorphic to x1 if there exists an isomorphism between them. We say
x is strongly isomorphic to x1 if we can additionally assume c “ 1. We denote by
ĂM0pD Ă X;α; mq the set of all strong isomorphism classes.

Definition 3.13. We say an element x “ rpΣ, ~wq;u; ss as in Definition 3.11 is stable if
the set of isomorphisms from x to itself is a finite set.

Note that there exists a C˚ action on ĂM0pD Ă X;α; mq such that

(3.14) ĂM0pD Ă X;α; mq{C˚ “M0pD Ă X;α; mq.

Remark 3.15. The holomorphic structure on u˚NDpXq used in Definition 3.11 is the one
discussed in Subsection 3.1.

Remark 3.16. We define:

dpαq :“ rDs ¨ α.
In the right hand side, we regard rDs and α as homology classes in X. We call d the
degree of pΣ, uq. If M0pD Ă X;α; mq is non-empty, then the definition implies that

(3.17) dpαq “
ÿ̀

i“0

mi.

Definition 3.18. We define evaluation maps

ev “ pev0, . . . , ev`q : M0pD Ă X;α; mq Ñ D``1

by

(3.19) evippΣ, ~wq;u; sq “ upwiq.

Let ppΣ, ~wq;u; sq represent an element of M0pD Ă X;α; mq. Define the map U from
Σ to the P1-bundle PpNDpXq ‘ Cq over D as follows (see Figure 6):

(3.20) Upzq “ rspzq : 1s P PpNDpXq ‘ Cq.

The discussion of Subsection 3.1 shows that U is JP-holomorphic. The homology class
of this map in H2pPpNDpXq ‘ Cq;Zq, denoted by α̂, is uniquely determined by the
following two properties:

(i) Projection of α̂ to H2pDq is α. Here D Ă PpNDpXq ‘ Cq is identified with the
zero section.
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(ii) The algebraic intersection of the infinity section D8 and α̂ is given by:

α̂X rD8s “ ´
ÿ

miă0

mi.

Therefore, ppΣ, ~wq;Uq defines an element of M``1pPpNDpXq‘Cq; α̂q, the moduli space
of stable maps of genus zero in PpNDpXq‘Cq of homology class α̂ and with ``1 marked
points. In particular, the stability in Definition 3.13 implies the stability of U (as a
holomorphic map from a nodal Riemann surface with marked points). The C˚ action
cra : bs “ rca : bs on PpNDpXq‘Cq induces a C˚ action on M``1pPpNDpXq‘Cq; α̂q. The
element rppΣ, ~wq;Uqs in the quotient space M``1pPpNDpXq ‘Cq; α̂q{C˚ is independent
of the choices of the representative ppΣ, ~wq;u; sq and so we may define a map

(3.21) M0pD Ă X;α; mq ÑM``1pPpNDpXq ‘ Cq; α̂q{C˚,
which is injective.

D

U(Σ)

D∞

w1

w0

w2

w3

w4 w5

w6

w7 w8

Figure 6. An element of M0pD Ă X;α; mq

Let M``1pD;αq be the moduli space of stable JD-holomorphic maps of genus 0 in the
manifold D with `` 1 marked points and of homology class α. We define a map

(3.22) M0pD Ă X;α; mq ÑM``1pD;αq

by sending rpΣ, ~wq;u; ss to rpΣ, ~wq;us, namely, we forget s in ppΣ, ~zq;u; sq. (Note that
stability is preserved by this process.)

We denote by M00pD Ă X;α; mq (resp. M0
``1pD;αq) the subset of M0pD Ă X;α; mq

(resp. M``1pD;αq) consisting of elements such that Σ is a sphere, namely, it consists
of elements without nodal points.

Lemma 3.23. The map (3.22) is injective. Moreover, (3.22) induces a bijection

(3.24) M00pD Ă X;α; mq ÑM0
``1pD;αq

if (3.17) holds.

Proof. Suppose rpΣ, ~wq;u; ss, rpΣ, ~wq;u; s1s are two elements of M0pD Ă X;α; mqmapped
to the same element of M0

m`1pD;αq. Then the ratio s1{s defines a holomorphic function
on Σ which is nonzero everywhere. Therefore, s1{s is constant. Thus rpΣ, ~wq;u; ss “
rpΣ, ~wq;u; s1s in M0pD Ă X;α; mq. It is also easy to see that (3.24) is surjective when
(3.17) holds. �

In the same way, we can prove:

Lemma 3.25. (3.22) is a bijection onto an open subset of M``1pD;αq (with respect to
the stable map topology).

Proof. Let ppΣ, ~zq, uq be an element of M``1pD;αq. We decompose Σ into irreducible
components as

Σ “
ď

a

Σa.
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We can easily show that rpΣ, ~wq, us is in the image of (3.22) if and only if the next
equalities hold for each a.

(3.26) D ¨ u˚rΣas “
ÿ

ziPΣa

mi.

Condition (3.26) is an open condition with respect to the stable map topology. Therefore,
the image of (3.22) is open. �

If we topologize M0pD Ă X;α; mq using the bijection in Lemma 3.25, the resulting
space is not compact. This issue stems from non-compactness of C˚. Our next task is
to compactify M0pD Ă X;α; mq. The compactification has a stratification and each
stratum is described by an appropriate fiber product of the spaces of the form M0pD Ă
X;α1; m1q for various choices of α1, m1. The strata of our compactification are labeled
with decorated rooted trees. They also encode the data of how to take fiber products:

Definition 3.27. A decorated rooted tree is a quadruple T “ pT, α,m, λq with the
following properties:

(1) T is a tree with the set of vertices C0pT q and the set of edges C1pT q. We are
given a decomposition of C0pT q into the disjoint union of two subsets Cout

0 pT q
and C ins

0 pT q. We call an element of Cout
0 pT q (resp. C ins

0 pT q) an outside vertex
(resp. inside vertex).

(2) All the outside vertices have valency one. We call an edge incident to an outside
vertex an outside edge. Any of the remaining edges is called an inside edge.

(3) There is a distinguished outside vertex v0 of T . Let e0 be the unique edge which
contains v0. We call v0 and e0 the root vertex and the root edge, respectively. We
call them root if it is clear from the context whether we mean the root vertex or
the root edge. We also fix a labeling tv0, v1, . . . , v`u of the outside vertices.

(4) α : C ins
0 pT q Ñ Π2pD;Zq is a map from the set of the inside vertices to Π2pD;Zq.

We call αpvq the homology class of v.
(5) m : C1pT q Ñ Zzt0u is a Zzt0u-valued function which assigns a nonzero integer

to each edge. We call mpeq the multiplicity of e.
(6) λ : C ins

0 pT q Ñ Z` is a Z` valued function. For a vertex v, we call λpvq the level
of v. There exists |λ| P Z` such that the image of λ is t1, 2, . . . , |λ|u, namely, λ
is a surjective map to t1, 2, . . . , |λ|u. We call |λ| the number of levels.

(7) For each vertex v P C ins
0 pT q, there exists a unique edge of v which is contained

in the same connected component as the root in T zv. We call it the first edge of
v and denote it by epvq. We then require the following balancing condition:

(3.28) mpepvqq ` αpvq ¨ rDs “
ÿ

ePC1pT q:vPe,e‰epvq

mpeq.

(This condition is the analogue of (3.17).)
(8) (Stability condition) Each vertex v P C ins

0 pT q satisfies at least one of the following
conditions:
(a) v contains at least 3 edges.
(b) αpvq X rωDs ą 0.

(9) Let e be an inside edge incident to the vertices v, v1. We assume e is epv1q, the
first edge of v1.
(a) If mpeq ą 0, then λpvq ă λpv1q.
(b) If mpeq ă 0, then λpvq ą λpv1q.

In particular, λpvq ‰ λpv1q.
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For a decorated rooted tree T , we define the homology class of T by

(3.29) αpT q “
ÿ

vPCins
0 pT q

αpvq

We say mpe0q is the input multiplicity of T and the set tmpeiq | ei P Cout
1 pT qu gives the

output multiplicities of T .
Let e belong to the set of inside edges C ins

1 pT q. The two vertices incident to e are the
target vertex tpeq and source vertex speq of e, if e is the first edge of tpeq.

Remark 3.30. We orient the edges so that it starts from the vertex speq and ends at the
vertex tpeq. (See Figure 7.) Then for given vertex v all the edges other than the first
edge epvq goes from v to other vertices. This is consistent with the convention in (3.28)
only epvq is on the left hand side.

Example 3.31. An example of a decorated rooted tree T is given in Figure 7. In the
figure, the outside vertices are drawn by black circles and inside vertices are drawn by
white circles. The input multiplicity of T is 3 and its output multiplicity is ´1. The
number of levels is 4. We also have

epv1q “ e0, epv2q “ e1, epv3q “ e2, epv4q “ e3, epv5q “ e4,

αpv2q ¨D “ ´3, αpv3q ¨D “ ´2, αpv4q ¨D “ ´1, αpv5q ¨D “ 2,

and
αpv1q “ 0.

v5

v1

v2

v3

v4

m(e1) = 1

m(e3) = 1

α(v1) = 0

m(e2) = 2

m(e5) = −1

m(e0) = 3
v0 v1

α(v5) · D = 2

α(v2) · D = −3
α(v3) · D = −2

λ = 1

λ = 2

λ = 3

λ = 4

m(e4) = −2

α(v4) · D = −1

Figure 7. Decorated rooted tree

Remark 3.32. The notion of level here is similar to the one appearing in the compact-
ification of the moduli space of pseudo-holomorphic curves in symplectic field theory
[BEH`03] and its generalization to stable Hamiltonian structures [CV15].

Definition 3.33. To each decorated rooted tree T “ pT, α,m, λq, we associate a moduli

space ĂM0pD; T q as follows. Fix an inside vertex v P C ins
0 pT q. Define mv

0 to be ´mpepvqq
where epvq is the first edge of v defined in Definition 3.27 (7). Let ev1, . . . , e

v
`pvq be the

remaining edges of v, mv
i “ mpevi q and mv “ pmv

0,m
v
1, . . . ,m

v
`pvqq. Define:

(3.34) ĂM0pD; T ; vq “ ĂM0pD Ă X;αpvq; mvq.
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Note that the right hand side is independent of the order of the edges ev1, . . . , e
v
`pvq.

Consider the evaluation map

(3.35) EV :
ź

vPCins
0 pT q

ĂM0pD; T ; vq Ñ
ź

ePCins
1 pT q

pD ˆDq

defined as follows. Let ~x “ pxv; v P C
ins
0 pT qq be an element of the domain of EV. The

e-th component EVp~xqe of EVp~xq is by definition:

(3.36) EVp~xqe “ pev0pxtpeqq, evipxspeqqq P D ˆD.
Here ev0 and evi are as in Definition 3.18 and i is taken so that e is the i-th edge of
speq. (speq and tpeq are defined at the end of Definition 3.27.) Let ∆ Ă D ˆ D be the
diagonal. We now define

(3.37)
ĂM0pD; T q “

ź

vPCins
0 pT q

ĂM0pD; T ; vq EV ˆ‹

ź

ePCins
1 pT q

∆.

Here we take the fiber product over the space
ś

ePCins
1 pT qpD ˆ Dq and ‹ denotes the

inclusion of
ś

∆ into
ś

pD ˆ Dq. The other map in the definition of the fiber product

is given in (3.35). We topologize ĂM0pD; T ; vq with the fiber product topology.

Example 3.38. Figure 8 sketches an element of ĂM0pD; T ; vq for the decorated ribbon
tree T given in Figure 8. Each of the vertical lines (4 of them) in the figure corresponds
to a“trivial cylinder” that is a map to a single fiber of PpNDpXq‘Cq. (More precisely, it
is an |mpeq| fold covering to a fiber.) The number assigned to a vertical edge or a double
point is the multiplicity of the corresponding edge of our tree. The map u : Σ Ñ D in
Figure 8 corresponding to xv1 has homology class 0 and is a constant map to a point
p of D. So the image of the map U corresponding to xv1 is contained in a fiber of the
normal bundle NDpXq at p.

xv1

xv2

xv3

xv4

3

1 2

0

−2

−1

D

D

D

D

D
−1

−2

xv5
2

1

−3

Figure 8. Configuration associated to the decorated rooted tree in Figure 7

Definition 3.39. Let |λ| be the number of the levels of T . We define a C|λ|˚ action on
ĂM0pD; T q as follows. For ~ρ “ pρ1, . . . , ρ|λ|q P C

|λ|
˚ and ~x “ pxvq P

ś

vPCins
0 pT q

ĂMpD; T ; vq.

We have:

(3.40) ~ρ ¨ ~x “ pρλpvqxvq.

Note that λpvq is the level of the vertex v and ρλpvq P C˚. The C˚ action on ĂMpD; T ; vq
is defined as in (3.14). The quotient space of this action is denoted by

xM0pD; T q “ ĂM0pD; T q{C|λ|˚ .
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We use the quotient topology to topologize this space.

Next, we take the quotient of xM0pD; T q with respect to the action of the group of
automorphisms of the decorated rooted tree T .

Definition 3.41. An automorphism of the decorated rooted tree T is an automorphism
of the tree T which fixes all the outside vertices and commutes with α, m and λ. The
group of automorphisms of T , which is a finite group, is denoted by AutpT q.

An element of AutpT q exchanges the vertices of T . Thus it induces an automorphism

of ĂM0pD; T q. This action is compatible with the C|λ|˚ action. Therefore, we obtain an

action of AutpT q on xM0pD; T q. We denote the quotient space by

M0pD; T q “ xM0pD; T q{AutpT q.
We say decorated rooted trees T “ pT , α,m, λq and T 1 “ pT 1, α1,m1, λ1q are isomor-

phic, if there exists an isomorphism of the underlying trees T , T 1 which sends root to
root, outside vertices to outside vertices, α to α1, m to m1, λ to λ1, and preserves the or-
dering of the outside vertices. From now on, we do not distinguish between a decorated
rooted tree and its isomorphism class.

We now define a compactification of M0pD Ă X;α; mq as a set.

Definition 3.42. Given m “ pm0,m1, . . . ,m`q, we say that T is of type pα; mq if
the homology class of T is α, its input multiplicity is m0 and output multiplicities are
tm1, . . . ,m`u. Define MpD Ă X;α; mq to be the disjoint union

ž

T
M0pD; T q

where T runs over all the decorated rooted trees of type pα; mq.

Proposition 3.43. There exists a topology on MpD Ă X;α; mq which is compact and
metrizable. The induced topology on each subspace M0pD; T q coincides with the one
defined above.

The topology in Proposition 3.43 is called the RGW topology. This proposition is
proved in Section 4.

Remark 3.44. We can also take the following fiber product.

(3.45)
ź

vPCins
0 pT q

M0pD; T ; vq EV ˆ‹

ź

ePCins
1 pT q

∆

instead of (3.37), where ĂM0pD; T ; vq is replaced by M0pD; T ; vq, which is by definition
ĂM0pD; T ; vq{C˚. Let h “ #C ins

0 pT q ´ |λ|. Then there exists an action of the group

|`|
ź

i“1

Chi˚
C˚

– Ch˚

on xM0pD; T q with hi “ #tv | λpvq “ iu such that p3.45q is the quotient space. This
Ch˚ action and the space (3.45) are not used in this paper. In fact, the disjoint union
of the spaces (3.45) for various T with the natural quotient topology does not carry
a Kuranishi structure, because this disjoint union is not Hausdorff. We can, however,
shrink it by a finite-to-one map and obtain a Hausdorff space. The log compactification
by [Teh22] seems to be related to this space. For the proof of some of the conjectures in
[DF18c, Section 6] (but not for the proof of Theorem 1), it seems necessary to construct
a Kuranishi structure on MpD Ă X;α; mq and perturbations in a way that are invariant
under these strata-wise Ch˚ actions.
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Example 3.46. Consider a decorated rooted tree T of type pα; mq such that T has
exactly one inside vertex v, αpvq “ α, and λpvq “ 1. There exists a unique such
decorated rooted tree. (The multiplicities of outside edges are determined by m and
there is no inside edge. The balancing condition (7) in Definition 3.27 is a consequence
of (3.17).) We call this decorated rooted tree the minimal tree of type pα; mq and denote
it by T 0

α;m. It is easy to see from the definition that

(3.47) M0pD, T 0
α;mq “M0pD Ă X;α; mq.

Next, we define the notion of level shrinking of decorated rooted trees. This notion
will be useful to describe the ‘closure’ of a stratum M0pD; T q in MpD Ă X;α; mq.

Definition 3.48. Let T “ pT, α,m, λq be a decorated rooted tree as in Definition 3.27
and |λ| be the number of levels of T . Let 1 ď i ă i ` 1 ď |λ|. We define the decorated
rooted tree obtained by pi, i` 1q level shrinking from T as follows.

We first define a tree T 1. We shrink each of the edges e in T such that pλpspeqq, λptpeqqq “
pi, i` 1q or pλpspeqq, λptpeqqq “ pi` 1, iq, to a point. We thus obtain a tree T 1 together
with a map π : T Ñ T 1. This map π is an isomorphism on the outside edges. The
outside edges of T 1 are by definition the images of the outside edges of T .

We define α1 : C ins
0 pT 1q Ñ Π2pD;Zq as follows:

(3.49) α1pv1q “
ÿ

vPCins
0 pT qXπ´1pv1q

αpvq.

We observe that for any edge e1 of T 1, the inverse image π´1pe1zBe1q is ezBe for some
edge e of T . We define m1 : C ins

1 pT 1q Ñ Zzt0u by:

(3.50) m1pe1q “ mpeq.

We finally define a level function λ1 : C ins
1 pT 1q Ñ t1, . . . , |λ|´1u as follows. Let v1 “ πpvq

with v P C ins
0 pT q, v1 P C ins

0 pT 1q.

(3.51) λ1pv1q “

$

’

&

’

%

λpvq if λpvq ă i,

i if λpvq “ i or i` 1,

λpvq ´ 1 if λpvq ą i` 1.

It is easy to see that, in the second case, the right hand side is independent of the
choice of v and it only depends on v1. It is also easy to show that pT 1;α1,m1, λ1q has the
properties of Definition 3.27. We say T 1 is obtained from T by level shrinking and write
T ă T 1 if T 1 is obtained from T by a finite number of pi, i`1q level shrinkings, possibly
for different choices of i. We write T ď T 1 if T ă T 1 or T “ T 1.

Figure 9 below is obtained from Figure 7 by p3, 4q level shrinking.
The following definition gives a notion of isotropy group for the elements of M0pD; T q.

Definition 3.52. Let x P M0pD; T q. By definition, x is the equivalence class of an

element px “ prxvs : v P C ins
0 pT qq of xM0pD; T q by the action of AutpT q where xv P

ĂM0pD; T ; vq. We also fix a representative ppΣv, ~wvq;uv; svq for xv. The isotropy group
Γx of x consists of the elements pg, tIvuvPCins

0 pT qq where g P AutpT q and Iv : pΣv, ~wvq Ñ

pΣgpvq, ~wgpvqq such that ugpvq ˝ Iv “ uv. Moreover, if 1 ď i ď |λ| with |λ| being the
number of the levels of T , then there is a constant number ai P C˚ such that for any v
with λpvq “ i we have:

sgpvq ˝ Iv “ ai ¨ sv.

Projection of pg, tIvuvPCins
0 pT qq to g induces a map to AutpT q and the kernel of this map

is equal to
ś

vPCins
0 pT qAutpxvq. In particular, if we define:

AutpT ; xq “ tg P AutpT q | gpx “ pxu.
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v5

v1

v2

m(e1) = 1

α(v1) = 0

m(e2) = 2

m(e5) = −1

m(e0) = 3

m(e6) = −2

v0 v1

v3

λ = 1

λ = 2

λ = 3

α(v5) · D = 2

α(v2) · D = −3 α(v3) · D = −3

Figure 9. level shrinking

then we have the short exact sequence

(3.53) 1 Ñ Autppxq Ñ Γx Ñ AutpT ; xq Ñ 1.

Remark 3.54. In [DF18b], we construct a Kuranishi structures on MpD Ă X;α; mq.
Each element of a Kuranishi structure has an isotropy group by definition and we may
assume that the Kuranishi structure on MpD Ă X;α; mq is chosen such that the isotropy
group of x PM0pD; T q ĂMpD Ă X;α; mq is Γx.

We finally explain an alternative way to specify the level function. This alternative
approach shall be useful in [DF18b,DF18c]. See [Teh22, Lemma 4.3] for a related notion.

Definition 3.55. A binary relation ď on a set A defines a quasi partial order if the
following properties hold:

(1) a ď b and b ď c imply a ď c.
(2) a ď a.

A quasi order on A is a quasi partial order such that for any two elements a, b P A, at
least one of the relations a ď b or b ď a holds. For a quasi partial order, we write a ă b
if a ď b but not b ď a.

Let ď, ď1 be two quasi partial orders on A. We say that ď1 is finer than ď if the
following holds.

(*) If a ă b then a ă1 b.

The similar notion is defined for quasi orders in an obvious way.

Let T0 “ pT, α,mq be an object, which has the properties of Definition 3.27 except
(6) and (9). In particular, T0 is equipped with the decomposition of the set of vertices
as in part (1) of Definition 3.27, the choice of the root and the enumeration of outside
vertices as in part (3) of Definition 3.27.

We then obtain a quasi partial order ď0 on C ins
0 pT q as follows:

(1) Suppose v1 ‰ v2. We write v1 ď00 v2 if and only if there exists an edge of e such
that Be “ tv1, v2u and one of the following holds.
(a) speq “ v1 and mpeq ą 0.
(b) speq “ v2 and mpeq ă 0.

(2) Suppose v ‰ v1.We write v ď0 v
1 if and only if there exists v1, . . . , vn such that

v1 “ v, vn “ v1 and vi ď00 vi`1.
(3) We also require v ď0 v.

It is easy to see that ď0 defines a quasi partial order on C0pT q.
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Lemma 3.56. Let T0 be as above. There is a one to one correspondence between the
following two objects:

(1) The map λ : C ins
0 pT q Ñ Z` satisfying parts (6) and (9) of Definition 3.27.

(2) A quasi order on C ins
0 pT q which is finer than ď0.

In particular, T0 together with a quasi-order ď finer than ď0 determines a decorated
rooted tree.

Proof. Suppose λ is given. We define ď by v ď v1 if and only if λpvq ď λpv1q. Definition
3.27 (9) implies that ď is finer than ď0.

Suppose we are given a quasi order ď on C ins
0 pT q which is finer than ď0. We define

a relation „ on C ins
0 pT q by v „ v1 if and only if v ď v1, v1 ď v. It is easy to see that „

is an equivalence relation. ď induces an order on C ins
0 pT q{ „. Then C ins

0 pT q{ „, as an
ordered set, is isomorphic to pt1, . . . , |λ|u,ďq. We thus obtain λ : C ins

0 pT q Ñ t1, . . . , |λ|u.
Definition 3.27 (9) follows from the assumption that ď is finer than ď0. �

3.4. RGW Compactification: a Single Disk or Strip Component. Next, we
describe a part of the construction of the RGW compactification of the moduli space
of pseudo-holomorphic disks and strips in XzD where there is only one disk (or strip)
component involved. The story of strips is very similar to the case of disks. So we discuss
the case of moduli space of pseudo-holomorphic disks in detail and then we explain how
the case of strips should be modified.

Let L Ă XzD be a compact Lagrangian submanifold and β P Π2pX,L;Zq, α P

Π2pX;Zq. Let m “ pm1, ¨ ¨ ¨ ,m`q be an `-tuple of positive integers and k ě 0.

Definition 3.57. We denote by Mreg,d
k`1 pβ; mq the set of all the isomorphism classes of

ppΣ, ~z, ~wq, uq with the following properties.

(1) Σ is the union of a disk D2 and trees of spheres rooted on IntpD2q. (We require
that any singularity of Σ is a nodal singularity.)

(2) ~z “ pz0, . . . , zkq and zi P BΣ. The points z0, . . . , zk are distinct and respect the
counter clockwise cyclic order on S1 “ BΣ.

(3) ~w “ pw1, . . . , w`q and wi P IntpΣq. The points w1, . . . , w` are distinct and away
from the nodes of Σ.

(4) u : Σ Ñ X is a pseudo-holomorphic map, upBΣq Ă L, and the homology class of
u is β.

(5) upwiq P D. Moreover, u´1pDq “ tw1, . . . , w`u.
(6) The order of tangency of u to D at wi is mi.
(7) ppΣ, ~z, ~wq, uq is stable in the sense of stable maps. (See, for example, [FOOO09b,

Subsection 2.1].)

We say ppΣ, ~z, ~wq, uq is isomorphic to ppΣ1, ~z 1, ~w 1q, u1q if there exists a biholomorphic
map v : Σ Ñ Σ1 such that vpziq “ z1i, vpwiq “ w1i and u1 ˝ v “ u. We define evaluation
maps

(3.58) evi : Mreg,d
k`1 pβ; mq Ñ D, i “ 1, . . . , `

at w’s as follows:

(3.59) evippΣ, ~z, ~wq, uq “ upwiq.

Note that we include the case that ` “ 0. In this case, we require that upΣqXD “ H
and write Mreg,d

k`1 pβ;Hq for the corresponding moduli space.

Definition 3.60. We denote by Mreg,spα; mq the set of the isomorphism classes of
objects ppΣ, ~wq, uq with the following properties.

(1) Σ is a connected nodal curve of genus 0.
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D

wi

z0

z1

z2

Figure 10. An element of Mreg,d
k`1 pβ; mq.

(2) ~w “ pw1, . . . , w`q, wi P Σ. The points w1, . . . , w` are distinct and away from
nodes.

(3) u : Σ Ñ X is a holomorphic map. The homology class of u is α.
(4) upwiq P D. Moreover, u´1pDq “ tw1, . . . , w`u.
(5) The order of tangency of u to D at wi is mi.
(6) ppΣ, ~wq, uq is stable in the sense of stable maps.

The definition of isomorphisms of such objects is similar to Definition 3.57. We also
define the following evaluation maps in the same way:

(3.61) evi : Mreg,spβ; mq Ñ D
To obtain our RGW compactification, we consider fiber products of the above defined

moduli spaces Mreg,d
k`1 pβ; mq, Mreg,spα; mq, and the moduli spaces of the form M0pD; T q,

which we defined in the previous subsection. The combinatorial objects to describe these
fiber products are given in the following definition:

Definition 3.62. Suppose L is a compact Lagrangian submanifold in the complement
of the smooth divisor D in X. A disk-divisor describing tree, or a DD-tree for short, is
an object S “ pS, c,m, α, T ,ďq with the following properties:

(1) S is a tree. The set of the vertices and the edges of S are respectively denoted
by C0pSq and C1pSq.

(2) c : C0pSq Ñ td, s,Du assigns one of the symbols d,s or D to each vertex v. We
call cpvq the color of v.2

(3) There exists exactly one vertex whose color is d. Here d stands for disk. We call
this vertex the root of S. There is also a number k associated to the root3. (The

root will correspond to a moduli space of the form Mreg,d
k`1 pβ; mq.)

(4) The root or a vertex with color s is joined4 only to vertices with color D. (Here s
and D stand for sphere and divisor, respectively. A vertex with color s will cor-
respond to a moduli space Mreg,spα; mq. A vertex with color D will correspond
to a moduli space M0pD; T pvqq.)

(5) There is no edge joining two vertices of color D.
(6) m : C1pSq Ñ Z` assigns a positive number to each edge of S. We call it the

multiplicity function: The number mpeq is called the multiplicity of the edge e.

2We use roman letters v and e to denote the vertices and the edges of S. In the case of decorated
rooted trees, we use italic letters v and e.

3k ` 1 is the number of boundary marked points.
4We say a vertex v is joined to a vertex v1 if and only if there exists an edge which contains both v

and v1.
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(7) If cpvq is equal to d, s, or D, then αpvq is respectively an element of Π2pX,L;Zq,
Π2pX;Zq or Π2pD;Zq. We call αpvq the homology class of v.

(8) For each vertex v with color D or s, there exists a unique edge e0pvq in Sztvu
which lies in the same connected component of Sztvu as the root. This edge is
called the first edge of v.

(9) Let v be a vertex with color D with the first edge e0pvq. Let the other edges
incident to v be denoted by e1pvq, . . . , e`pvqpvq. (Here `pvq ` 1 is the valency of
v.) Then T assigns to v a decorated rooted tree T pvq such that
(a) The homology class of T pvq is αpvq.
(b) Its input multiplicity is mpe0pvqq.
(c) Its output multiplicities are mpeipvqq, i “ 1, . . . , `pvq.

(10) ď is a quasi order on

(3.63) C ins
0 pSq “

ď

vPC0pSq

C ins
0 pT pvqq,

We require that the restriction of ď to C ins
0 pT pvqq coincides with ďv, which is

induced by the level function of T pvq using Lemma 3.56. We call any element
of C ins

0 pSq an inside edge of S.

If we want to specify the Lagrangian submanifold L, then we say S is a DD-tree for L.

Definition 3.64. The homology class of a DD-tree S “ pS, c,m, α, T ,ďq is defined as:

(3.65) βpSq “
ÿ

vPC0pSq

αpvq P Π2pX,L;Zq.

In the above expression, if v has color s or D we use the homomorphisms Π2pX;Zq Ñ
Π2pX,L;Zq and Π2pD;Zq Ñ Π2pX,L;Zq to define the right hand side. We say S is a
DD-tree of type pβpSq, kq.
Example 3.66. In Figure 11 a DD tree S is sketched. The symbols d, s, D denote the
vertices of colors d, s, D. The number written near each edge is the multiplicity of that
edge.

d

D DD

s s s

1
1

2 2 2 3

v(1) v(2) v(3)

Figure 11. An example of graph S

v0v1

m = 2
m = −1

m = 1

α · D = −2

λ = 1

λ = 2

α · D = −1

Figure 12. T pvp1qq
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v0 v1 v2

m = 2

m = −1

m = −2

α · D = −5

λ = 1

Figure 13. T pvp2qq

v0

m = 3
m = −1

α · D = −4

α · D = 1
λ = 1

λ = 2

Figure 14. T pvp3qq

We associate the decorated rooted trees T pvp1qq, T pvp2qq, T pvp3qq given in Figures
12, 13, 14 to the vertices vp1q, vp2q, vp3q, respectively. We put these trees on the position
of the corresponding vertices of S and then identify the outside edges of T pvpiqq with

the corresponding edges of S. We thus obtain the tree Ŝ in Figure 15. We call pS the

m = 2

m = −1

m = 1
α · D = 1

α · D = −2

m = 2

m = −1

m = −2

α · D = −5

m = 3
m = −1

α · D = −4

α · D = 1

ds s s

λ = 1

λ = 0

λ = 2

λ = 3

λ = 4

Figure 15. Detailed tree pS

D

D

D

D

λ = 0

λ = 1

λ = 2

λ = 3

λ = 4

Figure 16. object corresponding to pS in Figure 15.
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detailed tree associated to S. The level function λ in Figure 15 is defined using the quasi
order on C ins

0 pSq. Figure 15 describes a configuration of pseudo-holomorphic curves as
in Figure 16. (See (3.75).) We summarize the properties of the detailed tree associated
to S in the following lemma.

Lemma 3.67. We can associate pŜ, c, α,m, λq to S which satisfies the following prop-
erties in addition to (1)-(4) and (7), (8) in Definition 3.62.

(i) m : C1pŜq Ñ Zzt0u assigns a nonzero integer to each edges of S. We call it the
multiplicity function. The number mpeq is called the multiplicity of the edge e.

(ii) The balancing condition (3.28) is satisfied at the vertices with color D.
(iii) The stability condition in part (8) of Definition 3.27 is satisfied at vertices with

color D.
(iv) We require

αpvq ¨D “
ÿ

vPe

mpeq

for vertices with color d. We also require

αpvq ¨D “ ´mpe0pvqq `
ÿ

vPe

mpeq

for vertices with color s. Here e0pvq is the edge containing v such that e0pvq is
contained in the same connected component of Sztvu as the root.

(v) λ : C0pŜq Ñ Zě0 is a map such that:
(a) If v has color d or s then λpvq “ 0.
(b) If v has color D then λpvq ą 0.
(c) Part (9) of Definition 3.27 holds.
(d) The image of λ is t0, . . . , |λ|u for some |λ| ą 0.

Proof. Suppose Ŝ is the detailed tree associated to the DD tree S. A level function
can be defined on the set of the inside vertices of Ŝ by the quasi order ď as in Lemma
3.56. For vertices with color s or d, we define its level to be 0. The rest of the proof is
straightforward. �

Remark 3.68. Let e be an edge which joins a level 0 vertex v and a vertex v1 of positive
level. Part (v) of Lemma 3.67 implies that mpeq ą 0, if cpvq “ d. On the other hand, if
cpvq “ s, then mpeq ą 0 if and only if e ‰ e0pvq.

Remark 3.69. The restriction of λ to C ins
0 pT pvqq may not coincide with the level function

λv of T pvq as it can be seen in Example 3.66.

Definition 3.70. We call pŜ, c, α,m, λq the detailed DD-tree associated to the DD-tree
S.

Let S be a DD-tree and pŜ, c, α,m, λq be its associated detailed DD-tree. For each

vertex v of Ŝ, we associate a moduli space ĂM0pS; vq as follows. Let cpvq “ d and
ev1, . . . , e

v
`pvq be the edges incident to v. We then define:

(3.71) ĂM0pS; vq “Mreg,d
k`1 pαpvq; m

vq,

where mv “ pmpev1q, ¨ ¨ ¨ ,mpe
v
`pvqqq and k is the non-negative integer associated to the

root.
Let cpvq “ s, ev0 be the first edge of v, and ev1, . . . , e

v
` be the other edges of v. We

define:

(3.72) ĂM0pS; vq “Mreg,spαpvq; mvq,
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where mv “ p´mpev0q,mpe
v
1q, ¨ ¨ ¨ ,mpe

v
`pvqqq. Finally, suppose cpvq “ D with the first

edge ev0, and the remaining edges ev1, . . . , e
v
`pvq. We define:

(3.73) ĂM0pS; vq “ ĂM0pD Ă X;αpvq; mvq,

where mv “ p´mpev0q,mpe
v
1q, ¨ ¨ ¨ ,mpe

v
`pvqqq. This is similar to (3.34).

We can also define a map:

EV :
ź

vPC0pŜq

ĂM0pS; vq Ñ
ź

ePC1pŜq

pD ˆDq

similar to the map (3.35) as follows: Let e P C1pŜq. Let ~x “ pxv; v P C0pŜqq be an
element of the domain of EV. Then EVp~xqe, the component of EVp~xq corresponding to
the edge e, is defined as follows:

(3.74) EVp~xqe “ pev0pxtpeqq, evipxspeqqq P D ˆD.
Here ev0 and evi are given in Definition 3.18, (3.58) or (3.61), and i is chosen such that
e is the i-th edge of speq. Note that tpeq has color either s or D. Therefore, the first
edge of tpeq is defined and is e.

We define ĂM0pSq to be the following fiber product:

(3.75) ĂM0pSq “
ź

vPC0pŜq

ĂM0pS; vq EV ˆ‹

ź

ePC1pŜq

∆

where ‹ denotes the diagonal inclusion of
ś

ePC1pŜq
∆ into

ś

ePC1pŜq
DˆD with ∆ being

the diagonal in D ˆD. We also define a C|λ|˚ action on ĂM0pSq by

(3.76) ~ρ ¨ ~x “ pρλpvqxvq,

where ~ρ “ pρ1, . . . , ρ|λ|q P C
|λ|
˚ and ~x “ pxvq P

ś

vPCint
0 pŜq

ĂMpS; vq. In (3.76), if λpvq “ 0,

then ρλpvqxv is defined to be xv.
Next, we define:

(3.77) xM0pSq “ ĂM0pSq{C|λ|˚ .
Let AutpSq be the group of automorphisms of the tree Ŝ which preserves c, α, m, λ.

The group AutpSq acts on xM0pSq. We finally define

(3.78) M0pSq “ xM0pSq{AutpSq.

Definition 3.79. For k P Zě0 and β P Π2pX;L;Zq define M0,RGW
k`1 pL;βq to be the

disjoint union of all the spaces M0pSq, where S is a DD-tree with homology class β
such that k is the nonnegative integer associated to the root.

We next consider the case of holomorphic strips. Let L0, L1 Ă XzD be a pair of
compact Lagrangian submanifolds. We assume L0 is transversal to L1. Let p, q P L0XL1

and β P Π2pX;L1, L0; p, qq (See Definition 2.2.) and k0, k1 be nonnegative integers.

Definition 3.80. We denote by Mreg
k1,k0

pL1, L0; p, q;β; mq the set of all isomorphism

classes of ppΣ, ~z0, ~z1, ~wq, uq with the following properties.

(1) Σ is a strip R ˆ r0, 1s together with trees of spheres rooted in R ˆ p0, 1q. (We
require that the singularities of Σ to be nodal singularities.)

(2) ~zi “ pzi,1, . . . , zi,kiq and zi,j P R ˆ tiu, for i “ 0, 1. The points zi,1, . . . , zi,ki are
distinct, z1,1 ą ¨ ¨ ¨ ą z1,k1 and z0,1 ă ¨ ¨ ¨ ă z0,k0 .

(3) ~w “ pw1, . . . , w`q, wi P IntpΣq. w1, . . . , w` are distinct points in the interior of Σ
and are away from the nodal singularities.
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(4) u : Σ Ñ X is a holomorphic map, upRˆ tiuq Ă Li,

(3.81) lim
τÑ´8

upτ, tq “ p, lim
τÑ`8

upτ, tq “ q,

and the homology class of u is β.
(5) u´1pDq “ tw1, . . . , w`u.
(6) The order of tangency of u to D at wi is mi.
(7) ppΣ, ~z0, ~z1, ~wq, uq is stable in the sense of stable maps.

The definition of an isomorphism between two objects as above is similar to Definition
3.57.

wi

p

q

L0

L1 z1,1z1,2
z1,3

z0,1
z0,2

D

Figure 17. An element of Mreg
k1,k0

pL1, L0; p, q;β; mq.

Definition 3.82. We define evaluation maps:

evi : Mreg
k1,k0

pL1, L0; p, q;β; mq Ñ D i “ 1, . . . , `

by:

(3.83) evippΣ, ~z0, ~z1, ~wq, uq “ upwiq.

Definition 3.84. A strip-divisor describing tree, or an SD-tree for short, is an object
S “ pS, c,m, α, T ,ďq which satisfies the same properties as in Definition 3.62 except
that we replace (2), (3) and (7) by :

p2q1 c : C0pSq Ñ tstr, s,Du assigns one of the symbols str, s or D to each vertex v.
We call it the color of v and denote it by cpvq.

p3q1 There exists exactly one vertex whose color is str. The label “str” stands for
strip. We call the unique vertex with color str the root of S. There are also
integers k0 and k1 associated to the vertex v0. (The root will correspond to a
moduli space of the form Mreg

k1,k0
pL1, L0; p, q;β; mq.)

p7q1 If cpvq is equal to str, s, or D, then αpvq respectively belongs to Π2pX;L1, L0;Zq,
Π2pX;Zq or Π2pD;Zq. We call αpvq the homology class of v.

Analogous to DD-trees, we can associate a detailed SD-tree to an SD-tree.

The definition of the moduli space in (3.75) can be modified to define ĂM0pSq for an

SD-tree. If cpvq “ str the moduli space ĂM0pS; vq is defined to be

(3.85) ĂM0pS; vq “Mreg
k1,k0

pL1, L0; p, q;β; mvq

where mv “ pmpev1q,mpe
v
2q, ¨ ¨ ¨ ,mpe

v
`pvqq with ev1, . . . , ev`pvq being the edges incident to

the root v. If cpvq “ s or D, then ĂM0pS; vq is defined as in (3.72), (3.73). We define
ĂM0pSq, xM0pSq and M0pSq by (3.75), (3.77) and (3.78), respectively. Finally we define:
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Definition 3.86. For k0, k1 P Zě0, p, q P L0 X L1 and β P Π2pX;L1, L0;Zq, the set

M0,RGW
k1,k0

pL1, L0; p, q;βq is the disjoint union of all M0pSq, where S is an SD-tree of type

pβ; k0, k1q.

In the next subsection, we define compactifications of the sets M0,RGW
k`1 pL;βq and

M0,RGW
k1,k0

pL1, L0; p, q;βq. The definition of these compactifications uses the notion of

level shrinking for DD-trees and SD-trees. We discuss this notion for DD-trees. The
case of SD-trees is completely similar.

Definition 3.87. Let pŜ, c, α,m, λq be the detailed DD-tree associated to a DD-tree S.
Let i P t0, . . . , |λ|u. If i ą 0, then pi, i`1q-level shrinking of S is defined as in Definition
3.48. We define p0, 1q-level shrinking of S below.

Let v P C0pŜq with λpvq “ 1. Then cpvq is equal to D. There are two cases.
Case 1: There is no vertex v̂ with λpv̂q “ 0, which is joined to v. In this case, after
p0, 1q level shrinking, v will have the color s and its level is equal to 0.

Case 2: There exists a vertex v̂ with λpv̂q “ 0 which is joined to v. Let C Ă Ŝ be the

maximal connected subgraph of Ŝ which contains v and whose vertices have level 0 or 1.
We shrink C to a new vertex v1. The color of v1 is d if the root of Ŝ is in C. Otherwise,
the color of v1 is s. All the edges e, which are joined to a vertex of C, but are not in C,
will be joined to v1. We also define:

αpv1q “
ÿ

v̂PC

αpv̂q, λpv1q “ 0.

We perform this operation to all the vertices of level 1. We change the level of all the
vertices v with λpvq ą 1 to λpvq ´ 1. The resulting tree together with c, α,m and λ is
the detailed DD-tree associated to a DD-tree. We say this DD-tree is obtained from S
by p0, 1q level shrinking.

Example 3.88. In Figure 18, we sketch the detailed tree for a DD-tree S together
with its level function. Figure 19 gives the detailed tree obtained from S by p0, 1q level
shrinking.

ds s ss

λ = 1

λ = 0

λ = 2

λ = 3

λ = 4

Figure 18. Before (0,1) level shrinking.

ds s

λ = 1

λ = 0

λ = 2

λ = 3

Figure 19. After (0,1) level shrinking.

Definition 3.89. We write S ą S 1 if S is obtained from S 1 by a finite number of pi, i`1q
level shrinkings, possibly for different choices of i. We also write S ě S 1 if S ą S 1 or
S “ S 1.
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We define

(3.90) MpSq “
ď

S1ďS
M0pS 1q.

We will define a topology on MpSq in Section 4. As an immediate consequence of the
definition we have the following: If an element of M0pS 1q is obtained as a limit of a
sequence of elements of M0pSq, then S ě S 1.
3.5. RGW Compactification in the General Case. We now describe the compact-
ifications MRGW

k1,k0
pL1, L0; p, q;βq, MRGW

k`1 pL;βq. These compactifications are obtained by

taking the union of fiber products of various spaces of the forms M0,RGW
k1,k0

pL1, L0; p, q;βq,

M0,RGW
k`1 pL;βq. Those fiber products are defined using evaluation maps at the boundary

marked points. In the following definition we describe combinatorial objects which keep
track of these fiber products:

Definition 3.91. A Disk-Divisor describing rooted ribbon tree, or a DD-ribbon tree for
short, is R “ pR; v0;S, α,ďq with the following properties:

(1) R is a ribbon tree.
(2) The set of vertices C0pRq is divided into disjoint union of two subsets C int

0 pRq
and Cext

0 pRq, the set of all interior and exterior vertices. The valency of any
exterior vertex is one.

(3) We fix one exterior vertex v0, which we call the root vertex. We require that
the number of exterior vertices to be equal to k ` 1. We enumerate them as
v0, . . . , vk so that it respects the counter clockwise orientation, induced by the
ribbon structure.

(4) α is a map from C int
0 pRq to Π2pX,L;Zq .

(5) To each interior vertex v, we associate Spvq, which is a DD-tree of type pαpvq, kvq.
Here kv ` 1 is the valency of the vertex v.

(6) Let Ŝpvq denote the detailed DD-tree associated to Spvq. We define:

(3.92) C ins
0 pR̂q “

ď

vPCint
0 pRq

C ins
0 pŜpvqq.

We call C ins
0 pR̂q the set of inside vertices of the detailed tree associated to R.

The relation ď is a quasi order on C ins
0 pR̂q. We require that the restriction of

ď to C ins
0 pŜpvqq coincides with the partial order determined by the structure of

Spvq.
The homology class αpRq of R is the sum of the homology classes αpvq for all the interior
vertices. We also call pαpRq; kq the type of R.

v0

v1

v2

v3

v1

v2

v3

v4

Figure 20. A Disk-Divisor Describing Rooted Ribbon Tree.
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Example 3.93. A DD-ribbon tree R is given in Figure 20. Here black circles are exterior
vertices and white circles are interior vertices. The ribbon tree in Figure 20 corresponds
to the configuration of the disks drawn in Figure 21. The tree R has four interior verties
v1, v2, v3, v4. The corresponding DD-trees are given in Figure 22.

v0

v1

v2

v3

v1

v2

v3

v4

Figure 21. Configuration of disks corresponding to Figure 20.

To each R as in Definition 3.91, we can associate a detailed tree R̂ by forming the
following disjoint union and identifying each interior vertex v of R with the root of Ŝpvq:

R\
ď

vPCint
0 pRq

Ŝpvq.

The detailed tree associated to Example 3.93 is given in Figure 22. In this figure we
omit the exterior vertices of R and the edges incident to them. Nevertheless, they are
part of the detailed tree. The edges of level 0 are also drawn by dotted lines.5 The level
function on Ŝpviq induced by ď is given in Figure 22.

S d

Ŝ(v1)

d d SS

Ŝ(v2)

d

Ŝ(v3) Ŝ(v4)

λ = 1

λ = 0

λ = 2

Figure 22. Ŝpviq.

S SSv1v2 v3 v4

λ = 1

λ = 0

λ = 2

λ = 3

Figure 23. The detailed tree R̂ associated to Figures 20 and 22.

The detailed tree for DD-ribbon trees and DD-trees have the following differences:

5It is probably more natural to draw 3-dimensional figures. However, we content ourselves to a 2
dimension figure for simplicity.
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(1) For detailed trees of DD-ribbon trees, the vertices of level 0 have one of the
colors d, s or ext. d stands for disks, and there is one vertex with this color for
each interior vertex of R. s stands for spheres, which appear in Ŝpvq for interior
vertices v. There is a vertex with color ext for each exterior vertex of R.

(2) We fix a root among the vertices with color ext.
(3) There may be level 0 edges that join level 0 vertices of color d.

Definition 3.94. Let L0, L1 be compact Lagrangian submanifolds of XzD which in-
tersect transversally, and p, q P L0 X L1. A Strip-Divisor describing rooted ribbon tree,
or an SD-ribbon tree for short, is a 7-tuple R “ pR; vl, vr;S, pt, α,ďq with the following
properties (see Figure 24.):

(1) R is a ribbon tree.
(2) The set of vertices C0pRq is divided into disjoint union of two subsets C int

0 pRq
and Cext

0 pRq, the set of all interior and exterior vertices. The valency of exterior
vertices are one.

(3) vl, vr are exterior vertices of R, which we call the left most vertex and the right
most vertex. There is a subgraph C, which is a path that starts from vl and
ends at vr. We call a vertex and an edge of C a strip vertex and a strip edge.
We do not regard vl or vr as a strip vertex. In particular, all the strip vertices
are interior. We require C contains at least one strip vertex.

(4) The complement RzC is split into R0 and R1, as follows. We orient C so that
it starts from vl and ends with vr. Then R0 lies to the right and R1 lies to the
left of C. (We use the embedding of R in R2 associated to its ribbon structure
here.) The vertices or edges in R0 (resp. R1) are called d0-type (resp. d1-type)
vertices or edges. The graph R0 (resp. R1) has exactly k0 (resp. k1) exterior
edges.

(5) pt assigns to each strip edge e an element of L0 X L1. If e contains vl then
ptpeq “ p if e contains vr then ptpeq “ q.

(6) If v is a strip vertex then αpvq P Π2pL1, L0; ptpelpvqq, ptperpvqq. Here elpvq (resp.
erpvq) is the edge of C containing v which lies in the same connected component
of Cztvu as vl (resp. vr).

(7) If v is an interior d0 vertex (resp. an interior d1 vertex) then αpvq P Π2pX,L0;Zq
(resp. αpvq P Π2pX,L1;Zq).

(8) If v is a strip vertex, then Spvq is an SD-tree of type pαpvq; k0, k1q where ki is the
number of edges in Ri incident to v. If v is a d0 vertex then Spvq is a DD-tree for
the Lagrangian L0 of type pαpvq; kq where k` 1 is the number of edges incident
to v. If v is a d1 vertex then Spvq is a DD-tree for the Lagrangian L1 of type
pαpvq; kq where k ` 1 is the number of edges incident to v.

(9) ď is a quasi partial order on

(3.95) C ins
0 pR̂q “

ď

vPCint
0 pRq

C ins
0 pŜpvqq.

The set C ins
0 pR̂q is called the set of inside vertices of the detailed tree associated

to R. ď is a quasi partial order on C ins
0 pR̂q. The restriction of ď to C ins

0 pŜpvqq
coincides with the quasi order coming from the structure of Spvq.

The homology class αpRq of R is the sum of the homology classes αpvq for all interior
vertices v. We say the type of R is pp, q;αpRq; k0, k1q.

We can define the notion of the detailed tree R̂ associated to R in the same way as
in the case of DD-ribbon trees. We omit the details here. The main differences are:

(1) The vertices of level 0 have one of the colors d0, d1, str, le, ri, s, mk0, mk1.
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left most right most

exterior

exterior

L0

L1

strip vertices

C

R0

R1

Figure 24. Strip-Divisor describing ribbon tree.

p r q

L1

L0

Figure 25. Configuration corresponding to Figure 24.

(2) d0 (resp. d1) stands for disks with boundary condition L0 (resp. L1). The
vertices with color d0 (resp. d1) correspond to the interior vertices of R0 (resp.
R1).

(3) mk0 (resp. mk1) labels the exterior vertices of R0 (resp. R1) and corresponds
to the k0 (resp. k1) boundary marked points in L0 (resp. L1). The vertices with
color str correspond to the interior vertices v of C.

(4) le, ri correspond to the left most and the right most vertices of C.

Now we are ready to describe the moduli spaces associated to the DD- or SD- ribbon
trees. We first define evaluation maps at boundary marked points:

evBj : Mreg,d
k`1 pβ; mq Ñ L

for j “ 0, . . . , k by

(3.96) evBj ppΣ, ~z, ~wq, uq “ upziq

and

evBi,j : Mreg
k1,k0

pL1, L0; p, q;β; mq Ñ Li

for i “ 0, 1 and j “ 1, . . . , ki by:

(3.97) evBi,jppΣ, ~z0, ~z1, ~wq, uq “ upzi,jq.

Definition 3.98. Let R “ pR; v0;S, α,ďq be a DD-ribbon tree, R̂ the associated de-

tailed tree and λ the level function of R̂. For an interior vertex v of R, let v P C int
0 pSpvqq.
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We then define:

(3.99) ĂM0pR; vq “ ĂM0pSpvqq
where the right hand side is defined as in (3.71), (3.72) or (3.73).

Let C int,λ“0
1 pR̂q be the set of all interior edges of R̂ of level 0 and Cλą0

1 pR̂q be the set
of all edges with positive level. We define:

EV :
ź

vPCins
0 pR̂q

ĂM0pR; vq Ñ
ź

ePCλą0
1 pR̂q

pD ˆDq ˆ
ź

ePCint,λ“0
1 pR̂q

pLˆ Lq

as follows. Let e P Cλą0
1 pR̂q. Then there exists a unique v P C int

0 pRq such that
e P C1pSpvqq. We define the e-component of

ś

ePCλą0
1 pR̂qpD ˆ Dq by (3.74). Let

e P C int,λ“0
1 pR̂q. We define speq, tpeq P C int

0 pRq the vertices incident to e such that
speq is in the same connected component of Rzteu as the root. We label the edges of
v “ tpeq as e0pvq, . . . , ekvpvq such that tpe0pvqq “ v. (See Figure 26 below.) Suppose e is

e = e0(v)

s(e)

t(e) = v

e1(v)

e2(v)

e3(v)e4(v)

v0

Figure 26. eipvq.

the ke-th edge of speq. Now we define the e-component of
ś

ePCλ“0
1 pR̂qpLˆ Lq by

EVepxv; v P C
ins
0 pR̂qq “ pevB0pxtpeqq, evBkepxspeqqq.

We now define:

(3.100) ĂM0pRq “
ź

vPCins
0 pR̂q

ĂM0pR; vq

EV ˆ‹

¨

˝

¨

˝

ź

ePCλą0
1 pR̂q

∆D

˛

‚ˆ

¨

˝

ź

ePCint,λ“0
1 pR̂q

∆L

˛

‚

˛

‚,

where ‹ is the inclusion map:
¨

˝

ź

ePCλą0
1 pR̂q

∆D

˛

‚ˆ

¨

˝

ź

ePCint,λ“0
1 pR̂q

∆L

˛

‚

Ñ
ź

ePCλą0
1 pR̂q

pD ˆDq ˆ
ź

ePCint,λ“0
1 pR̂q

pLˆ Lq.

Let |λ| be the total number of positive levels, namely, the image of λ is t0, 1, . . . , |λ|u.

We define an action of C|λ|˚ on ĂM0pRq by the same formula as (3.76). (This action is
trivial on the components xv with λpvq “ 0.)
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We define

(3.101) xM0pRq “ ĂM0pRq{C|λ|˚
The group of automorphisms AutpRq is the direct product

ź

vPCint
0 pRq

AutpSpvqq.

We also define:

(3.102) M0pRq “ xM0pRq{AutpRq.
The RGW compactification MRGW

k`1 pL;βq of Mreg
k`1pL;βq, as a set, is defined to be:

(3.103) MRGW
k`1 pL;βq “

ď

R
M0pRq

where the disjoint union in the right hand side is taken over all DD-ribbon trees R of
type pβ, k ` 1q.

The pi, i ` 1q level shrinking of a DD-ribbon tree is defined as in Definition 3.48 for
i ą 0 and as in Definition 3.87 for i “ 0. We say R1 is obtained from R by level
shrinking and write R1 ą1 R if R1 is obtained from R by finitely many iterations of the
level shrinking operations.

We also need shrinkings of level 0 edges.

Definition 3.104. Let R̂ be the detailed tree associated to a DD-ribbon tree R and e
be an interior level 0 edge. We remove the edge e and identify its two vertices v1, v2 to
obtain v. All the edges other than e which contains one of v1 or v2 will be incident to
the new vertex. The homology class of v is v βpvq “ βpv1q`βpv2q. We obtain a detailed
tree associated to a new DD-ribbon tree of the same type. We say R1 ą2 R if R1 is
obtained from R by applying the above process finitely many times. We also say R1 is
obtained from R by level 0 edge shrinkings.

We write R1 ą R if R1 is obtained from R by finitely many iterations of level shrink-
ings and level 0 edge shrinkings.

We sketch some of the basic properties of the compactification in (3.103) which will
be proved in the rest of this paper and the sequels. In Section 4, we define a topology
on MRGW

k`1 pL;βq, called the RGW topology, that is compact and metrizable. Moreover,
for any RD-ribbon tree R, the space

MpRq :“M0pRq Y
ď

R1ăR
M0pR1q.

is a closed subset of MRGW
k`1 pL;βq. In [DF18b], we define a Kuranishi structure on

MRGW
k`1 pL;βq with corners such that the underlying subset of the codimension n corner

is the union of all moduli spaces M0pRq, where R has at least n` 1 interior vertices. A
more detailed description of the boundary, which is important for our purposes, will be
given in [DF18c, Subsection 2.2].

Next, we define the moduli space associated to an SD-ribbon tree.

Definition 3.105. Let R “ pR; vl, vr;S,pt, α,ďq be an SD-ribbon tree, R̂ be the asso-
ciated detailed tree and λ be the level function of R. For an interior vertex v of R, let
v P C int

0 pSpvqq. We define:

(3.106) ĂM0pR; vq “ ĂM0pSpvq; vq
where the right hand side is as in (3.71), (3.72), (3.73) or (3.85).
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Let C int,λ“0
1 pRiq be the set of all interior edges of Ri of level 0 that are not strip edges

(i “ 0, 1), and Cλą0
1 pR̂q be the set of the edges of level ą 0. We define

EV :
ź

vPCins
0 pR̂q

ĂM0pR; vq

Ñ
ź

ePCλą0
1 pR̂q

pD ˆDq ˆ
ź

ePCint,λ“0
1 pR0q

pL0 ˆ L0q ˆ
ź

ePCint,λ“0
1 pR1q

pL1 ˆ L1q

as follows. Let e P Cλą0
1 pR̂q. Then there exists a unique v P C ins

0 pRq such that e P
C1pSpvqq. We define the e-component of

ś

ePCλą0
1 pŜqpD ˆDq by (3.74).

Let e P C int,λ“0
1 pR1q and speq, tpeq P C int

0 pRq be the vertices incident to e, such that
speq is in the same connected component of Rzteu as C. We enumerate the edges of
v1 “ tpeq as e0pv

1q, . . . , ekv1 pv
1q such that spe0pv

1qq is v “ speq. (See Figure 27 below.)

C

t(e) = v

s(e) = v

e = e0(v )

e1(v )e2(v )
e3(v )

Figure 27. eipv
1q.

If speq P R1, we enumerate the edges incident to e using the ribbon structure such
that the first edge of speq is labeled by 0. Suppose e is the ke-th edge of speq. Now we
define the e-th component of the product space

ś

ePCint,λ“0
1 pR1q

pL1 ˆ L1q by

EVepxv; v P C
int,λ“0
0 pR̂qq “ pevB0pxtpeqq, evBkepxspeqqq.

If speq P C, then we enumerate the edges of speq in R1 in the counter clockwise order. Let
e be the ke-th edge among them. (See Figure 28 below). We then define e-th component
of

ś

ePCint,λ“0
1 pR1q

pL1 ˆ L1q by

EVepxv; v P C
int,λ“0
0 pR̂qq “ pevB0pxtpeqq, evB1,kepxspeqqq.

The case e P C int,λ“0
1 pR0q can be defined in the same way.

We define:

(3.107) ĂM0pRq “
ź

vPCins
0 pR̂q

ĂM0pR; vq EVˆ‹

¨

˝

¨

˝

ź

ePCλą0
1 pR̂q

∆

˛

‚ˆ

¨

˝

ź

ePCint,λ“0
1 pR1q

∆

˛

‚ˆ

¨

˝

ź

ePCint,λ“0
1 pR0q

∆

˛

‚

˛

‚,
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C
C s(e) = v

e

ke = 2

1
2

3

4

t(e)

Figure 28. ke.

where ‹ is the inclusion map. Let |λ| be the total number of positive levels. We define

an action of C|λ|˚ on ĂM0pRq by the same formula as (3.76). We define

xM0pRq “ ĂM0pRq{C|λ|˚
The group of automorphisms AutpRq is given as the direct product

ź

vPCint
0 pRq

AutpSpvqq.

We define:

M0pRq “ xM0pRq{AutpRq.
Now the RGW compactification MRGW

k1,k0
pL1, L0; p, q;βq of Mreg

k1,k0
pL1, L0; p, q;β;Hq is

defined as

(3.108) MRGW
k1,k0 pL1, L0; p, q;βq “

ď

R
M0pRq

where the disjoint union in the right hand side is taken over all RD-ribbon trees R of
type pp, q;β; k0, k1q.

We define the notion of level shrinking and level 0 edge shrinking for SD-ribbon trees
in the same way as in the case of DD-ribbon trees and write R1 ă R, if R is obtained
from R1 by a composition of finitely many iterations of these two operations.

As in the disc case, we list some of the basic properties of the compactification
in (3.108) which will be proved later. In Section 4, we define a topology on the set
MRGW

k1,k0
pL1, L0; p, q;βq, called the RGW topology, that is compact and metrizable. For

any RD-ribbon tree R, the space

MpRq :“M0pRq Y
ď

R1ăR
M0pR1q.

is a closed subset of MRGW
k1,k0

pL1, L0; p, q;βq. In [DF18b], we define a Kuranishi structure

on MRGW
k1,k0

pL1, L0; p, q;βq with corners such that the underlying subset of the codimen-

sion n corner is the union of all moduli spaces M0pRq, where R has at least n ` 1
interior vertices. A more detailed description of the boundary, which is important for
our purposes, will be given in [DF18c, Subsection 2.2].
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4. Stable Map Topology and RGW Topology

4.1. Review of Stable Map Topology. We first review the definition of stable map
topology, which plays an essential role in the definition of the RGW topology. The idea
of compactifying moduli spaces of pseudo-holomorphic curves goes back to the ground-
breaking work of Gromov in [Gro85]. It was pointed out in [Kon95a] that the notion of
stable maps, which is an adaptation of the notion of stable curves due to Mumford, pro-
vides a suitable compactification of the moduli space of pseudo-holomorphic curves. The
definition of stable map topology in the form that we use in this paper was introduced
in [FO99, Definition 10.3].

Let Md
k`1,` be the compactified moduli space of disks with k ` 1 boundary marked

points and ` interior marked points. This space is the compactification of the space

M0,d
k`1,` “ tpD

2, ~z, ~z`qu{ „. Here ~z “ pz0, . . . , zkq, ~z
` “ pz`1 , . . . , z

`
` q are distinct points

such that zi P BD
2, z`i P IntD2, and pz0, . . . , zkq respects the counter clockwise ori-

entation of BD2. The equivalence relation „ is defined by the action of PSLp2,Rq “
AutpD2q. An element of the compactification Md

k`1,` is an equivalence class of pΣ, ~z, ~z`q,
where Σ is a tree like union of disks with double points plus trees of sphere com-
ponents attached to interior points of the disks. The tuples ~z “ pz0, . . . , zkq and
~z` “ pz`1 , . . . , z

`
` q are respectively boundary and interior marked points. The object

pΣ, ~z, ~z`q representing an element of Md
k`1,` is also required to satisfy a stability condi-

tion. See [FOOO09a, Definition 2.1.18] for more details. Hereafter with a slight abuse
of notation, we say pΣ, ~z, ~z`q is an element of Md

k`1,`. Note that the symmetric group

S` of order `! acts on Md
k`1,` by exchanging the order of interior marked points.

The moduli space Md
k`1,` has the structure of a smooth manifold with boundary and

corner. Its codimension m corner consists of the elements pΣ, ~z, ~z`q such that Σ has at
least m` 1 disk components. (See [FOOO09a, Theorem 7.1.44].)

For any pair of injective and order preserving maps ik,k1 : t1, . . . , ku Ñ t1, . . . , k1u and

i``,`1 : t1, . . . , `u Ñ t1, . . . , `1u, we define the forgetful map:

(4.1) fgik,k1 ,i
`

`,`1
: Md

k1`1,`1 ÑMd
k`1,`

as follows. Let pΣ1, ~z 1, ~z`1q P Md
k1`1,`1 . Define ~z “ pz0, zik,k1 p1q, . . . , ik,k1pkqq and ~z “

pz`
i`
`,`1
p1q
, . . . , z`

i`
`,`1
p`q
q. The triple pΣ1, ~z, ~z`q may not represent an element of Md

k`1,` if

it does not satisfy the stability condition. By shrinking all unstable components of
pΣ1, ~z, ~z`q, we obtain pΣ, ~z, ~z`q, which satisfies the stability condition. This element
pΣ, ~z, ~z`q represents fgik,k1 ,i

`

k,k1
pΣ1, ~z 1, ~z`1q. See [FOOO09b, page 419] for more details.

If ik,k1 or i``,`1 is the identity map, we omit it from the notation fgik,k1 ,i
`

`,`1
. If ik,k1 is the

identity map and i``,`1piq “ i, for i “ 1, . . . , `, then we write fg`1,` instead of fgi`
`,`1

.

We consider the map

(4.2) fg``1,` : Md
k`1,``1 ÑMd

k`1,`.

As proved in [FOOO09b, Lemma 7.1.45], the fiber pfg``1,`q
´1pΣ, ~z, ~z`q is diffeomorphic

to rΣ where rΣ is obtained from Σ by replacing each boundary node by an interval. (See
Figure 29.) The space Ck`1,` is given by shrinking all such intervals to a point. In other
words, there exists:

(4.3) π : Cd
k`1,` ÑMd

k`1,`

such that the fiber over pΣ, ~z, ~z`q is identified with Σ. Note that Cd
k`1,` is merely a

topological space and does not carry the structure of a manifold or an orbifold. Let
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Σ̃Σ

Figure 29. rΣ

SCd
k`1,` be the subset of Cd

k`1,` consisting of x P Cd
k`1,` such that if πpxq “ pΣ, ~z, ~z`q,

then x corresponds to a boundary or interior node of Σ.

Lemma 4.4. The subspace Cd
k`1,`zSCd

k`1,` has the structure of a smooth manifold with

corners. Moreover, the restriction of (4.3) to Cd
k`1,`zSCd

k`1,` is a smooth submersion.

Proof. By construction Cd
k`1,`zSCd

k`1,` is an open subset of Md
k`1,``1. This verifies the

first part. The second part also follows from the corresponding results about Md
k`1,``1,

which is a consequence of a similar result about the moduli space of marked spheres.
(The later is classical. See, for example, [ACG11].) �

The symmetry group S` of order `! acts on Cd
k`1,` and Md

k`1,` such that (4.2), (4.3)

are S`-equivariant. Moreover, the S` action on Cd
k`1,`zSCd

k`1,` is smooth.

The spaces Cd
k`1,`, Md

k`1,` are all metrizable. We fix metrics on them and use these

metrics throughout the paper. (The whole construction is independent of the choice of
metrics.)

Let ζ “ pΣ, ~z, ~z`q P Md
k`1,`. We define Γζ “ tγ P S` | γζ “ ζu. The group Γζ has

a biholomorphic action on Σ which permutes interior marked points ~z`. This action
is necessarily trivial on the disk components. In the following definition, SΣ denotes
π´1pζq X SCd

k`1,`. This set consists of boundary and interior nodes of Σ.

Definition 4.5. An ε-trivialization of the universal family (4.3) at ζ is the following
object.

(1) A Γζ-invariant relatively compact open subset K Ă ΣzSΣ.

(2) A Γζ-invariant neighborhood U of ζ in Md
k`1,`.

(3) A smooth open embedding Φ : K ˆ U Ñ Cd
k`1,`zSCd

k`1,`, which is Γζ-invariant.

(4) The following diagram commutes.

K ˆ U Cd
k`1,`

U Md
k`1,`

Φ

π

Here the left vertical arrow is the projection map and the second horizontal
arrow is the inclusion map.

(5) The image of Φ contains π´1pUqzBεpSΣq. Here BεpSΣq is the ε neighborhood
of SΣ in Cd

k`1,`.

The existence of ε-trivialization for any ε is a consequence of Lemma 4.4.

Remark 4.6. If Σ is a disk then SΣ is an empty set. In this case, an ε-trivialization of
the universal family is a local trivialization. Note that (4.3) is a fiber bundle in the C8

category in a neighborhood of such elements of Md
k`1,`.
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Remark 4.7. A similar ‘trivialization of the universal family’ is described in [FO99,
Section 9] or [DF18b, Section 4]. This notion is employed to define a topology in
[FO99, Definition 10.2]. In [FO99] and subsequent works such as [FOOO12, Section 16]
and [FOOO16, Section 8], more specific choices of trivializations are used. Namely, a
particular choice of coordinate charts are used at the nodes and the gluing construction is
exploited to obtain a nearby element of Md

k`1,` and a coordinate of the gluing parameter.
Such a choice would be useful to study gluing analysis of pseudo-holomorphic curves and
to construct Kuranishi neighborhoods, as it was done in [FO99,FOOO12,FOOO16]. See
also [DF18b]. To define stable map topology, we do not need these specific choices and
can work with any ε-trivialization of the universal family in the above sense.

Next, we review the stable map compactification Md
k`1,`pβq of M0,d

k`1,`pβq for β P

Π2pX,Lq. The space M0,d
k`1,`pβq consists of ppD2, ~z, ~z`q, uq where pD2, ~z, ~z`q P M0,d

k`1,`

and u : pD2, BD2q Ñ pX,Lq is a pseudo-holomorphic map. An element of Md
k`1,`pβq

is an isomorphism class of ppΣ, ~z, ~z`q, uq, where Σ is a tree like union of disks with
double points plus trees of sphere components attached to the interior points of the
disks, ~z and ~z` are boundary and interior marked points, and u : pΣ, BΣq Ñ pX,Lq is
a pseudo-holomorphic map. The object ppΣ, ~z, ~z`q, uq is required to satisfy the stability
condition. (See [FOOO09a, Definition 2.1.24] for more details.) We say an element
ppΣ, ~z, ~z`q, uq PMd

k`1,`pβq is source stable if pΣ, ~z, ~z`q PMd
k`1,` is stable.

Definition 4.8. Let ppΣ, ~z, ~z`q, uq, ppΣa, ~za, ~z
`
a q, uaq (a “ 1, 2, 3, . . . ) belong to Md

k`1,`pβq.

We assume they are all source stable. We say ppΣa, ~za, ~z
`
a q, uaq converges to ppΣ, ~z, ~z`q, uq

in the stable map topology and write

lims
aÑ8

ppΣa, ~za, ~z
`
a q, uaq “ ppΣ, ~z, ~z

`q, uq

if the following holds. For each ε, there exist ε1 ą 0 and an ε1-trivialization of the
universal family at ζ “ pΣ, ~z, ~z`q, denoted by pK,U ,Φq, with the following properties:

(1) Let ξa “ pΣa, ~za, ~z
`
a q. This sequence converges to ξ in Md

k`1,`.

(2) If a is large, then for any connected component C of π´1pξaqzΦpK ˆ tξauq, the
diameter of uapCq is smaller than ε.

(3) We define u1a : K Ñ X by u1apzq “ uapΦpz, ξaqq. Then the C2 distance between
u1a and u is smaller than ε for sufficiently large values of a.

In the same way as in (4.1), we define:

(4.9) fgik,k1 ,i
`

`,`1
: Md

k1`1,`1pβq ÑMd
k`1,`pβq.

We shall use this map in the case k “ k1, ik,k1piq “ i and i``,`1piq “ i for i ď `. In this

case, this map is denoted by the simplified notation fg`1,`.

Definition 4.10. Let ζa “ ppΣa, ~za, ~z
`
a q, uaq, ζ “ ppΣ, ~z, ~z

`q, uq be elements of Md
k`1,`pβq.

We say that ζa converges to ζ in the stable map topology and write

lim
aÑ8

ζa “ ζ

if there exists ζ 1a, ζ
1 PMd

k`1,`1pβq (`1 ě `) with the following properties:

(1) ζ 1a, ζ
1 are source stable.

(2) fg`,`1pζ
1
aq “ ζa. fg`,`1pζ

1q “ ζ.
(3) lims

aÑ8
ζ 1a “ ζ 1 in the sense of Definition 4.8.

Related to this definition, we have the following lemma, whose proof is given in
[Fuk17, Lemma 12.13]. It is also a consequence of [FOOO18, Lemma 4.14].
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Lemma 4.11. Let ζ, ζa P Md
k`1,`pβq. We assume limaÑ8 ζa “ ζ. Suppose ζ 1 P

Md
k`1,`1pβq such that

(a) ζ 1 is source stable.
(b) fg`,`1pζ

1q “ ζ.

Then there exists ζ 1a PMd
k`1,`1pβq such that Definition 4.10 (1), (2) and (3) hold.

Remark 4.12. Lemma 4.11 implies that for source stable objects, Definition 4.10 coin-
cides with Definition 4.8.

We define the closure operator c for subsets of Md
k`1,`pβq as follows. IfA ĂMd

k`1,`pβq,
then Ac is the set of all limits of sequences of elements of A. Here the limit is taken in
the sense of Definition 4.10.

Lemma 4.13. The closure operator c satisfies the Kuratowsky’s axioms. Namely, we
have: (a) Hc “ H, (b) A Ď Ac, (c) pAcqc “ Ac, (d) pAYBqc “ Ac YBc.

See [Fuk17, Lemma 12.15] for the proof. This closure operator allows us to define a
topology on Md

k`1,`pβq, called the stable map topology. In the same way as in [FO99,

Lemma 10.4], we can prove that the stable map topology is Hausdorff. In the same way
as in [FO99, Lemma 11.1], we can prove that the stable map topology is compact. We
can define the stable map topology for moduli spaces of pseudo-holomorphic spheres or
strips in the same way.

4.2. RGW Topology. In the rest of this section, we define the RGW topology and
study some of its properties. In this subsection, we define limits of sequences of pseudo-
holomorphic disks, spheres and strips in the RGW topology, and then we prove sequential
compactness for the RGW topology. As a part of the definition of the RGW topology, we
explain when two elements of compactified moduli spaces are ε-close to each other. The
way that this notion is defined makes it clear that Kuranishi neighborhoods of points
of the moduli space (to be constructed in [DF18b]) contains a neighborhood of that
point in the moduli space. We shall also show that the compactified moduli spaces are
metrizable. In particular, they are Haussdorff and their sequential compactness imply
that RGW moduli spaces are compact. Since the definitions and proofs are mostly
similar in the case of strips and spheres, we mainly focus on the case of disks and then
make some comments on how they should be adapted to the case of strips and spheres.

4.2.1. RGW Topology for Disks 1: Introducing Interior Marked Points. We first gener-
alize the RGW compactification in Section 3 to the case of the moduli space of pseudo-
holomorphic disks equipped with interior marked points. We modify the moduli space

Mreg,d
k`1 pβ; mq of Definition 3.57 and define Mreg,d

k`1,hpβ; mq as follows.

Definition 4.14. The set Mreg,d
k`1,hpβ; mq consists of isomorphism classes of ppΣ, ~z, ~z`, ~wq, uq

such that (1)-(6) of Definition 3.57 and the following conditions are satisfied.

(i) ~z` “ pz`1 , . . . , z
`
h q, where z`i P Int Σ. These points are distinct and away from

~w.
(ii) ppΣ, ~z, ~z` Y ~wq, uq is stable in the sense of stable maps.

We define Mreg,s
h pα; mq by modifying Mreg,spα; mq of Definition 3.60 in a similar

way. Namely, an element of Mreg,s
h pα; mq has the form ppΣ, ~z`, ~wq, uq which satisfies

Definition 3.60 (1)-(5), ~z` is an h-tuple of distinct marked points away from ~w, and
ppΣ, ~z` Y ~wq, uq is stable.

Let m “ pm0, . . . ,m`q. We define ĂM0
hpD Ă X;α; mq as the set of strong isomorphism

classes of ppΣ, ~z`, ~wq;u; sq such that ppΣ, ~wq;u; sq satisfies Definition 3.11 (1)-(4) and ~z`
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is an h-tuple of additional distinct marked points disjoint from ~w. We also require
stability of ppΣ, ~w Y ~z`q;uq instead of Definition 3.11 (5).

Using these spaces as in Section 3, we may define a compactification of Mreg,d
k`1,hpβq

as follows. We consider a generalization of the notion of detailed DD-ribbon trees of
homology class β, where one such detailed DD-ribbon tree R̂ is required to satisfy the
additional conditions:

(DD+.1) We have a map mk : t1, . . . , hu Ñ C int
0 pR̂q, that describes each element of ~z` on

which component lies. Define:

hv “ #ti P t1, . . . , hu | mkpiq “ vu.

(DD+.2) We modify stability as follows. For each interior vertex v of R̂ we assume one of
the following holds.
(a) The homology class of v is nonzero.
(b) If the color of v is s or D, then the number of edges containing v plus hv is

not smaller than 3.
(c) If the color of v is d, then the following inequality holds:

2pthe number of edges of positive levelq

` pthe number of edges of level 0q ` 2hv ě 3.

We denote by R` the pair pR,mkq. We then modify the fiber product (3.100) as follows.

Firstly we need to replace ĂM0pR, vq with ĂM0pR`, vq, defined as below. If we are in the
situation of (3.71), where the color of v is d, then:

(4.15) ĂM0pR`, vq “Mreg,d
k`1,hv

pαpvq; mvq.

Here mv is defined as in (3.71). If we are in the situation of (3.72), where the color of
v is s, then:

(4.16) ĂM0pR`, vq “Mreg,s
hv

pαpvq; mvq.

Here mv is defined as in (3.72). If we are in the situation of (3.73), where the color of
v is D, then:

(4.17) ĂM0pR`, vq “ ĂM0
hvpD Ă X;αpvq; mvq.

Here mv is defined as in (3.73).

Thus we modify (3.100), (3.101) and (3.102) to obtain, ĂM0pR`q, xM0pR`q, and
M0pR`q. We finally modify (3.103) to:

(4.18) MRGW
k`1,hpL;βq “

ď

R`
M0pR`q.

4.2.2. RGW Topology for Disks 2: Definition of Convergence. In our definition of the
RGW topology, we use the obvious forgetful map

(4.19) forget : MRGW
k`1,hpL;βq ÑMk`1,hpL;βq

from the RGW compactification to the stable map compactification. Namely, for each

factor ĂM0pR`, vq, we forget various parts of the information associated to that element
(such as the section sv in the case that the color of v is D) and glue them according to

the detailed DD-ribbon tree R̂`. (Note that in the case that the color of v is D, the
target of the map uv is D which is a subset of X. So we can regard it as a map to X.)

Situation 4.20. We consider the following situation.

(1) ζa “ ppΣpaq, ~zpaq, ~z
`paqq, uaq PMreg,d

k`1,hpβ;Hq.

(2) ζ PM0pR`q ĂMRGW
k`1,hpL;βq where ζ “ pζpvq; v P C int

0 pR̂`qq and:
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(a) ζpvq P Mreg,d
k`1,hv

pαpvq; mv
`q when the color of v is d. We write ζpvq “

ppΣpvq, ~zpvq, ~z`pvq, ~wpvqq, uvq.
(b) ζpvq P Mreg,s

hv
pαpvq; mvq when the color of v is s, and ζpvq is given by

ppΣpvq, ~z`pvq, ~wpvqq, uvq.

(c) ζpvq P ĂM0
hv
pD Ă X;βpvq; mvq when the color of v is D. We write ζpvq “

ppΣpvq, ~z`pvq, ~wpvqq;uv; svq.
(3) We assume

lim
aÑ8

forgetpζaq “ forgetpζq.

Here the convergence is given by the stable map topology.
(4) We assume forgetpζaq and forgetpζq are source stable.

We firstly define when a sequence ζa as in Situation 4.20 converges to ζ in the RGW
topology. Later, we reduce the definition of the RGW topology in the general case to this
special situation. Let ξa and ξ be source curves of forgetpζaq and forgetpζq, respectively.
By assumption (Situation 4.20 (3) and (4)), ξa converges to ξ in Md

k`1,h. For each
sufficiently small ε, we take an ε-trivialization of the universal family in the sense of
Definition 4.8, which we denote by pK,U ,Φq. We also define:

(4.21) Kpvq “ K X Σpvq.

By Definition 4.8 (3), u1apzq “ uapΦpz, ζaqq converges to u in the C2 topology on each
Kpvq. We denote by u1a,v the restriction of u1a to Kpvq.

Let v be a vertex with color D. Then for sufficiently large a, we may assume

(4.22) u1a,vpzq P Nďc
D pXq.

for z P Kpvq. Here Nďc
D pXq is the set of pp, xq P NDpXq such that p P D and x is in the

fiber of NDpXq with }x} ď c, which is also identified with a regular neighborhood of D in
X using an almost complex structure preserving symplectomorphism. (See Subsection
3.2.) We use this symplectomorphism to make sense of (4.22). Therefore, we can use
(4.22), to obtain maps:

(4.23) u1a,v : Kpvq Ñ NDpXq.

The data of ζ include a section sv of u˚vNDpXq. We use this section to obtain the map

(4.24) Uv : Σpvqz~wpvq Ñ NDpXqzD.
Recall that the definition of M0pRq ĂMRGW

k`1,hpL;βq involves taking the quotient by the

C|λ|˚ -action and AutpRq. (See (3.101) and (3.102).) Here we fix one representative for
these quotients.

The main requirement that we need to define is how the sections sv are related to the
objects ζa. Let |λ| be the number of levels of R̂. We have the identification:

(4.25) NDpXqzD “ Rˆ SpNDpXqq

where SNDpXq is the unit S1-bundle associated to NDpXq.

Definition 4.26. Suppose we are in Situation 4.20. We say that ζa converges to ζ in
the RGW topology and write

lims
aÑ8

ζa “ ζ,

if for each j P t1, . . . , |λ|u, there exists a sequence ρa,j P C˚ and for each ε ą 0 there
are an ε-trivialization pK,U ,Φq as above and an integer Npεq such that the following
properties hold:
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(1) For a ě Npεq and any v, we have ξa P U and:

dC2

´

Dil1{ρa,λpvq ˝ u
1
a,v, Uv

¯

ă ε

We use the product metric on (4.25) to define the C2 distance for the maps with
domain Kpvq. The map Dilc is given by dilation in the fiber direction of NDpXq.
In particular, it is an isometry with respect to the product metric.

(2) If j ă j1 then

lim
aÑ8

ρa,j
ρa,j1

“ 8.

Roughly speaking, Item (1) says that on Kpvq, the sequence of maps ua converges to
Uv after scaling by ρa,λpvq. Item (2) asserts that the distance between uapKpv

1qq and D
goes to zero faster than the distance between uapKpvqq and D if λpvq ă λpv1q. The idea
of using dilation in the above definition of convergence goes back to [LR01].

Remark 4.27. As we mentioned before, there is an ambiguity of the choice of the rep-

resentative of ζa because of the C|λ|˚ -action. If we take another choice, we can change
ρa,j to ρa,jcj where cj P C˚. Therefore, Definition 4.26 is independent of the choice of
representatives.

In Definition 4.26, we define the RGW convergence in the case that source curves are
stable. We can define the general case analogous to the stable map topology as follows.
Firstly note that we can define a forgetful map

fgh1,h : MRGW
k`1,h1pL;βq ÑMRGW

k`1,hpL;βq

of interior marked points for h1 ą h. Namely, we forget the marked points with labels
ph` 1q, . . . , h1 and shrink the components which become unstable. In this process, the
level function λ may not be preserved because all the components in a certain level
may be shrunk. In the case that this happens, we remove such a level, say m, and
decrease the value of the level function for each vertex of level ą m. In other words,
the quasi order ď is preserved by this shrinking process. In particular, this construction
is similar to the forgetful map (4.9) in the discussion of stable map topology. See also
[DF18c, Subsection 4.2] on the forgetful map of the boundary marked points.

Definition 4.28. Let ζa P Mreg,d
k`1,hpL;β;Hq and ζ P MRGW

k`1,hpL;βq. We say that ζa
converges to ζ and write

lim
aÑ8

ζa “ ζ,

if there are source stable elements ζ 1a P Mreg,d
k`1,h1pL;β;Hq and ζ 1 P MRGW

k`1,h1pL;βq as in

Situation 4.20 such that

(1) fgh1,hpζ
1
aq “ ζa, fgh1,hpζ

1q “ ζ.
(2) lims

aÑ8
ζ 1a “ ζ 1.

4.2.3. RGW Topology for Disks 3: Compactness. The next proposition provides the
main part in showing that the space MRGW

k`1,hpL;βq is compact:

Proposition 4.29. For any sequence ζa P Mreg,d
k`1,h1pL;βq, there exists a subsequence

which converges in the sense of Definition 4.28.

As a preparation for the proof of this proposition, we need two lemmas. The first one
is a standard exponential decay result.
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Lemma 4.30. There is a positive constant ε and for any positive integer k, there are
constants Ck, ek such that the following holds. Let AT :“ r´T, T sˆS1 and u : AT Ñ D
be a JD-holomorphic map such that

ż

AT

u˚ωD ă ε.

Then
k
ÿ

`“1

|p∇`uqpτ, tq| ď Cke
´ekpT´|τ |q

for pτ, tq P r´T ` 1, T ´ 1s ˆ S1. Here the left hand side is the Ck´1 norm of the first
derivative of u with respect to the standard coordinates on r´T, T s ˆ S1.

The following lemma is a standard fact about conformal maps between annuli.

Lemma 4.31. Let Apc1, c2q be the annulus given as

tz P C | c1 ď |z| ď c2u.

Let u : r´T, T s ˆ S1 Ñ Apc1, c2q be a holomorphic map that

|up´T, tq| “ c1 |upT, tq| “ c2.

Then there exist a complex number z0 and a positive integer m such that:

(4.32) upτ, tq “ expp2πmpτ `
?
´1tq ´ z0q.

Proof of Proposition 4.29. Suppose ζa “ ppΣpaq, ~zpaq, ~z`paqq, uaq is an element of the

moduli space Mreg,d
k`1,h1pL;βq. Using compactness of the stable map compactification

[FO99, Theorem 11.1], we may assume that there exist ζ 1a and ζ 1 which are source
stable, ζ 1a converges to ζ 1 in the stable map topology (Definition 4.8) and fgpζ 1aq “ ζa.
Here fg is the forgetful map of interior marked points. Without loss of generality, we can
replace ζa by ζ 1a. We also assume that ζ “ ppΣ, ~z, ~z`q, uq. Let G be the set of irreducible
components of Σ. We will write Σw and uw for the irreducible component associated to
w P G and the restriction of the map u to this component. The set G can be divided
into two parts:

G “ G0 YGą0,

where w P Gą0 if and only if upΣwq is contained in D.

We need to find ζ̂ PMRGW
k`1,hpL;βq with forgetpζ̂q “ ζ and show that, after passing to

a subsequence of tζauaPN, the properties of Definition 4.26 hold. In particular, we need
to find the following objects:

(I) A meromorphic section sw of u˚wpNDpXqq for each w P Gą0.
(II) A level function λ : GÑ t0, 1, . . . , |λ|u.

(III) A multiplicity function m associated to any intersection point of two irreducible
components Σw and Σw1 such that λpwq ‰ λpw1q.

(IV) An element ρa,j P C˚ for each j ď |λ| and a.

We construct the objects in (I)-(IV) in an inductive way. Let

Σp0q “
ď

wPG0

Σw Σ1p0q “
ď

wPGą0

Σw

In other words, Σp0q is the union of the irreducible components Σw of Σ that upΣwq

is not contained in D, and Σ1p0q is the union of all the remaining components. The
intersection Sp0q :“ Σp0q X Σ1p0q consists of finitely many nodal points. For each point
p P Sp0q, we fix a small neighborhood Up (resp. U 1p) in Σp0q (resp. Σ1p0q). Let Up0q

(resp. U1p0q) denote the union of the open sets Up (resp. U 1p). For each p P Sp0q, we
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also fix an open neighborhood of uppq P D that is contained in the subspace6 Nă1
D pXq

of X. We may assume that this open set has the form Bp1q ˆ Vp with respect to a local
unitary trivialization of NDpXq where Bprq is the ball of radius r and Vp is the open

ball of radius 1 in CdimpDq. After modifying the choice of Up, we can also assume that u
maps Up to Bpσq ˆ Vp, the boundary of Up to Spσq ˆ Vp, U

1
p to t0u ˆ Vp and p to p0, 0q.

Here Sprq Ă C is the circle of radius r and σ ă 1
2 is a positive real number, independent

of p. Finally, let Kp0q and K`p0q denote the subspaces Σ1p0qzU1p0q and Σ1p0q Y Up0q.
(See Figure 30.)

DK(0)

K+(0)

σ

Σ (0)

Σ(0)

Figure 30. Kp0q and K`p0q

Let Upξq be a small neighborhood of ξ “ pΣ, ~z, ~z`q in Md
k`1,h. We fix Kp0q,K`p0q Ă

Cd
k`1,h with the following properties: (See Figure 31.)

(1) Kp0q,K`p0q are manifolds with boundary and Kp0qzBKp0q, K`p0qzBK`p0q are
open subsets of Cd

k`1,h.

(2) Kp0q X π´1pξq “ Kp0q and K`p0q X π´1pξq “ K`p0q.
(3) Kp0q,K`p0q are closed subsets of π´1pUpξqq.

If a is large enough, then ξa “ pΣpaq, ~zpaq, ~z
`paqq is an element of Upξq. For such a, we

denote Kp0qXπ´1pξaq and K`p0qXπ´1pξaq by Kap0q and K`
a p0q. For large enough values

of a, uapK
`
a p0qq is a subset of Nă2σ

D pXq and the intersection uapK
`
a p0qq XNăσ{2

D pXq is
non-empty. Moreover, K`

a p0qzKap0q has one connected component for each p P Sp0q.
We write Ka,p for the interior of this connected component which is an annulus. If we
only consider large enough values of a, then ua maps Ka,p to Bp2σq ˆ Vp.

We define:

ρa,1 “ supt}uapzq} | z P Kap0qu.

where } ¨ } denotes the fiber norm of elements of NDpXq. Note that the supremum may
be achieved either on the boundary of Kap0q or at a point on an irreducible component
which does not intersect Sp0q. (See Figure 32.) By definition limaÑ8 ρa,1 “ 0. The
composition:

(4.33) u1a :“ Dil1{ρa,1 ˝ ua : K`
a p0q Ñ Nă2σ{ρa,1

D pXq,

is a holomorphic map, which sends Kap0q to Nď1
D pXq.

We pick d1 P p1, 2q and d2,a P p
σ

2ρa,1
´ 1, σ

2ρa,1
q such that they are regular values of the

function:

z P K`
a p0q ÞÑ }u1apzq}.

6Here we assume that after a rescaling of the hermitian metric on the bundle NDpXq, the disk bundle
Nă1

D pXq can be identified with a neighborhood of D in X.



LAGRANGIAN FLOER THEORY IN DIVISOR COMPLEMENT 45

Σ(0)

Σ (0)

U(ξ)

K(0)

K(0)

Σ(0)

Σ (0)

U(ξ)

K+(0)

K+(0)

Figure 31. Kp0q and K`p0q

sup ua(z)

taken here sup ua(z)

taken here

Ka(0)

increase

D

Ka(0)

Figure 32. where sup is taken

For p P Sp0q, we define:

Ua,p “ tz P Ka,p | }u
1
apzq} P rd1, d2,asu.

The domain Ua,p is conformally equivalent to an annulus r´Ta,p, Ta,psˆS
1. Otherwise,

there exists a domain D Ă Ka,pzUa,p, which is a connected component of D Ă Ka,pzUa,p
and its boundary lies on Ua,p. (See Figure 33.) Then one of the following occurs:

(1) }u1apzq} “ d1 for z P BD and }u1apzq} ď d1 for z P D.
(2) }u1apzq} “ d2,a for z P BD and }u1apzq} ě d2,a for z P D.

Both cases are impossible, because of the maximum principle.
Let u1a : r´Ta,p, Ta,ps ˆS

1 Ñ Vp be the composition of a conformal isomorphism from
r´Ta,p, Ta,ps ˆ S1 to Ua,p, the map u1a and the projection NDpXq Ñ D. If a is large
enough, then we may assume that the assumption of Lemma 4.30 is satisfied and hence
we have the exponential decay result of this lemma.
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Figure 33. Subdomain D

We next discuss almost complex structure of the pull back bundle pu1aq
˚NDpXq. The

chosen unitary trivialization of NDpXq in a neighborhood of uppq (which identifies this
neighborhood with the direct product Dp1q ˆ Vp) induces a unitary trivialization of the
bundle pu1aq

˚NDpXq. We may consider two connections on this bundle over Ua,p: the
connection θ0 given by the trivialization and the connection θ given by puling back the
connection on NDpXq that is used in the definition of the almost complex structure J
on X in a neighborhood of D. (See Subsection 3.2.) After fixing a large enough positive
integer k (k “ 2 will be sufficient for our purposes), we can apply Lemma 4.30 to obtain
constants c and δ such that

(4.34)
k
ÿ

`“1

|∇`pθ ´ θ0qpτ, tq| ď ce´δpT´|τ |q

holds for any pτ, tq P r´Ta,p, Ta,psˆS
1. Here by letting ε go to zero and keeping δ fixed,

we may assume that c is arbitrarily small.
We use θ to obtain the structure of a holomorphic line bundle on pu1aq

˚NDpXq, which
we denote by L. We denote by L0 the holomorphic line bundle pu1aq

˚NDpXq with direct
product holomorphic structure, that is induced by θ0. We will construct an isomorphism
of holomorphic line bundles g : L0 Ñ L. Regarding g as a C˚-valued function on
r´Ta,p, Ta,ps ˆ S

1, we need to solve

(4.35) Bg “ pθ0 ´ θq
p0,1qg,

In fact, if pθ0´ θq
p0,1q “ αpdτ ´ idtq, then g “ exppfq for any solution f of the equation

(4.36)
df

dτ
` i

df

dt
“ 2α

gives a solution of (4.35). Lemma 4.40 implies that there is a solution f of (4.36) such
that the Ck norm of f over r´Ta,p ` 1, Ta,p ´ 1s ˆ S1 is bounded by a constant ε1 that
depends only on the constants C and δ in (4.34). In particular, we have the following
bound for g “ exppfq:

(4.37) |g ´ 1|Ckpr´Ta,p`1,Ta,p´1sˆS1q ă ε1,

after possibly increasing the value of ε1.
The pseudo-holomorphic map u1a induces a holomorphic section û1a : r´Ta,p, Ta,ps ˆ

S1 Ñ L. In particular,

g´1 ¨ û1a : r´Ta,p, Ta,ps ˆ S
1 Ñ L0 – r´Ta,p, Ta,ps ˆ S

1 ˆ C
is holomorphic, where the complex structure of the codomain is the direct product of
the complex structures r´Ta,p, Ta,ps ˆ S1 and C. Since g is a bundle isomorphism it
preserves the C˚ action and projection. Although it does not preserve norm, we have
the following inequality for any v P L0:

1´ ε1 ă |gpvq{v| ă 1` ε1.

We define

U 1a,b “
 

z P r´Ta,p ` 1, Ta,p ´ 1s | pg´1 ˝ û1aqpzq P rp1` ε
1qd1, p1´ ε

1qd2,as
(

.

In the same way as before, U 1a,b is conformal to an annulus r´T 1a,p, T
1
a,ps ˆ S

1.
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Compose a conformal isomorphism from r´T 1a,p, T
1
a,psˆS

1 to U 1a,p with the map g´1˝u1a
to define

u2a,p “ pu
2
a,p,1, u

2
a,p,2q : r´T 1a,p, T

1
a,ps ˆ S

1 Ñ App1` ε1qd1, p1´ ε
1qd2,aq ˆ Vp.

Lemma 4.31 asserts that there are a positive integer ma,p and a complex number za,p
such that

(4.38) u2a,p,1pτ, tq “ expp2πma,ppτ `
?
´1tq ´ za,pq.

The convergence of ζa to ζ in the stable map topology implies that ma,j is independent
of a for sufficiently large values of a. In fact, this common value, denoted by mp, is the
order of tangency of upΣp0qq to D at p. Consequently, limaÑ8 d2,a “ 8 implies that

lim
aÑ8

T 1a,p “ 8.

The functions g ¨u2a,p can be perturbed and extended into functions va,p : r´Ta,p,8qˆ

S1 Ñ C ˆ Vp. Firstly let χ : R Ñ r0, 1s be a smooth function satisfying the following
properties:

(i) χpτq “ 1 for τ P p´8, 0s;
(ii) χpτq “ 0 on τ P r1,8q.

Then we define

va,ppτ, tq “ ppχpτqpg ´ 1q ` 1qu2a,p,1pτ, tq, χpτqpu
2
a,p,2pτ, tq ´ u

2
a,p,2p0, 0qq ` u

2
a,p,2p0, 0qq

if pt, τq P r´T 1a,p, T
1
a,ps ˆ S

1, and

va,ppτ, tq “ pexpp2πma,ppτ `
?
´1tq ´ za,pq, u

2
a,p,1pτ, tq, u

2
a,p,2p0, 0qq

if pt, τq P r1,8q ˆ S1. We may regard va,p as a map into PpNDpXq ‘ Cq by identifying
CˆVp with the open subset of NDpXq Ă PpNDpXq‘Cq, given by fibers of NDpXq over
Vp. Lemma 4.31 and the shape of the symplectic form ωP on PpNDpXq ‘ Cq given in
Subsection 3.2. implies that there is a positive constant C, independent of a, such that:

(4.39)

ż

r0,1sˆS1

pva,pq
˚ωP ą ´C

ż

r0,1sˆS1

|dva,p|
2 ă C.

where r0, 1sˆS1 Ă r´Ta,p,8qˆS
1 is the cylinder where the map u2a,p,2 is not necessarily

holomorphic anymore. The norm of the differential dva,p is defined using the metric
associated to ωP and JP.

Suppose Σpa; 1q is a sphere given by gluing the cylinders r´Ta,p,8q ˆ S1 to K`
a p0q

and then adding a point for each p. The maps u1a and va,p can be used to define a map

u3a : Σpa; 1q Ñ PpNDpXq ‘ Cq.

The map u3a is equal to u1a on the subspace of K`
a p0q where }u1a} is at most d1 and is

equal to va,p on the cylinder r´Ta,p,8q ˆ S1. In particular, u3a is holomorphic except
on the cylinders r0, 1s ˆ S1 Ă r´Ta,p,8q ˆ S

1.
The convergence of ζa to ζ in the stable map topology implies that π˝u3a is convergent

to u|Σ1p0q. This observation and the behavior of u3a on each cylinder r´Ta,p,8qˆS
1 allows

us to conclude that the maps u3a represent the same homology class in PpNDpXq ‘Cq.
Thus we can use (4.39) to conclude that there is a uniform constant M such that

ż

Σ1pa,1q
|du3a |

2 ăM

where | ¨ | is defined with respect to ωP and JP. Gromov compactness implies that after
passing to a subsequence, the sequence pΣpa; 1q, u3a,1q together with the marked points

converges as a stable map. Let u8,1 : Σp8, 1q Ñ PpNDpXq ‘ Cq be the limit.
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Any irreducible component Σp8, 1qh of Σp8, 1q such that u8,1pΣp8, 1qhq is not con-
tained in a fiber of PpNDpXq ‘ Cq corresponds to an irreducible component of Σw

with w P Gą0. This follows from convergence of ζa to ζ in the stable map topol-
ogy. Therefore, if Σp8, 1qh does not correspond to an irreducible component of Σ, then
pπ ˝ u8,1qpΣp8, 1qhq should be a point where π : PpNDpXq ‘ Cq Ñ D is the projection
map. Convergence of ζa to ζ in the stable map topology also implies that any irreducible
component Σw with w P Gą0 is in correspondence with a unique component Σp8, 1qh
of Σp8, 1q.

Let Σp8, 1qh be an irreducible component of Σp8, 1q with u8,1pΣp8, 1qhq being not
contained in a fiber of PpNDpXq ‘ Cq. Let Σw, for w P Gą0, be the corresponding
component. We also assume that u8,1pΣp8, 1qhq is not included in the zero section D0

of PpNDpXq‘Cq. Then we define the level of w to be 1. We can also use the restriction
of u8,1 to Σw to define a meromorphic section sw of NDpXq. Let G1 be the set of all
elements w of G with λpwq “ 1. Our choices of the constants ρa,1 guarantee that G1 is
not an empty set.

We also write Gą1 for Gą0zG1. If w P Gą1, then there is a corresponding component
Σp8, 1qh of Σp8, 1q whose image under u8,1 is contained in the section D0. Let w1 P G1

be chosen such that Σw and Σw1 share a nodal point p. Then the image of Σw1 by the
map u8,1 intersects D0 at the point p. The value of the multiplicity function m at the
point p is defined to be the order of tangency of this intersection. Thus we partially
obtained the required objects in (I)-(IV). We repeat a similar construction to obtain a
partition of Gą0 as follows:

Gą0 “ G1 \G2 \ . . .

Since each Gi is non-empty, this process terminates in finitely many steps. Therefore, we
construct the objects claimed in (I)-(IV). Using them, it is straightforward to construct

an element ζ̂ PMRGW
k`1,hpL;βq such that ζa are convergent to ζ̂. �

Lemma 4.40. For any integer k, there is a constant c such that the following claim
holds. Suppose h : r´T, T s ˆ S1 Ñ C satisfies

(4.41)
k
ÿ

`“1

|∇`hpτ, tq| ď Ce´δpT´|τ |q.

Then there is a function f : r´T, T s ˆ S1 Ñ C such that

(4.42)
df

dτ
` i

df

dt
“ h

and

(4.43)
k
ÿ

`“1

|∇`fpτ, tq| ď c ¨ C2p1`
1

δ2
q,

for any τ P r´T ` 1, T ´ 1s.

Proof. Throughout the proof c is a positive constant which might increase from each
line to the next one. Suppose that we have the following Fourier series presentation for
the function h:

hpτ, tq “
8
ÿ

n“´8

ϕnpτqe
2πint.

The assumption implies that for any τ , we have

(4.44)
8
ÿ

n“´8

|ϕnpτq|
2 ď c ¨ C2e´2δpT´|τ |q
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Then we can take the function f to be

fpτ, tq “
8
ÿ

n“´8

ψnpτqe
2πint

where

ψnpτq :“

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

´

ż T

τ
e2πnpτ´sqϕnpsqds n ą 0,

ż τ

0
ϕ0psqds n “ 0,

ż τ

´T
e2πnpτ´sqϕnpsqds n ă 0.

One can easily see that for non-zero integer n, we have

}ψn}
2
L2pr´T,T sq ď

1

4π|n|
}ϕn}

2
L2pr´T,T sq,

and as a consequence of (4.44), we have

}ψ0}
2
L2pr´T,T sq ď c0

C2

δ2
.

In summary, we have

}f}L2 ď c0C
2p1`

1

δ2
q

Now for any point pτ, tq P r´T `1, T ´1s, the cylinder p´τ ´1, τ `1qˆS1 is a subspace
of r´T, T s ˆ S1, and we can use elliptic regularity to obtain the desired claim. �

4.2.4. RGW Topology : Strips and Spheres. In this part, we give the definition of the
RGW topology in several other cases. Since the definition is similar to the case of discs,
we skip the details of the construction.

We first consider the case of strips. Let L0, L1 be Lagrangian submanifolds of XzD
which intersect transversally. Let p, q P L0XL1, and form Mreg

k1,k0
pL1, L0; p, q;β;Hq as in

Definition 3.80. We also consider the case that the pseudo-holomorphic strips have h in-
terior marked points and denote the resulting moduli space by Mreg

k1,k0;hpL1, L0; p, q;β;Hq.

The stable map compactification of this space, denoted by Mk1,k0;hpL1, L0; p, q;β;Hq,
is defined in [FOOO09a, Subsection 3.8.8].

An element of the compactification is represented by ppΣ, ~zp1q, ~zp0q, ~z`q, uq where Σ
is the union of a line of strips, trees of disks attached to the sides of the strips, and
trees of spheres attached to the interior of strips or disks. (See Figure 34.) The points

~zp1q “ pz
p1q
1 , . . . , z

p1q
k1
q are boundary marked points on one side of the boundary of strips,

and ~zp0q “ pz
p0q
1 , . . . , z

p0q
k0
q are boundary marked points on the other side of the boundary

of strips. (See Figure 34.) Moreover, ~z` is an h-tuple of interior marked points, which
lie on the interior of the disks, the strips and the spheres of Σ. Such configurations are
described by an SD-tree R as in Figure 24. The only difference is that we also need to
include a marking map mk : t1, . . . , hu Ñ C ins

0 pRq. As in the previous subsection, we
denote the pair pR,mkq by R`. The definition of the stable map topology is essentially
the same as Definitions 4.8 and 4.10, and we omit it here.

Situation 4.45. We consider the following situation.

(1) ζa “ ppΣpaq, ~z
p1qpaq, ~zp0qpaq, ~z`paqq, uaq PMreg

k1,k0;hpL1, L0; p, q;β;Hq.

(2) ζ “ pζpvq; v P C int
0 pR̂qq PM0pR`q ĂMRGW

k1,k0;hpL1, L0; p, q;βq. with the following
components:
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p q
r1 r2

X

X

X

X
X

ⓍⓍ

Ⓧ

Ⓧ

Ⓧ

◎

◎

◎

◎

◎

◎

◎

strips

disks bounding L0

disks bounding L1

spheres

spheres

◎

Ⓧ

X z
(1)
i

z+i

z
(0)
i

p, q, r1, r2 ∈ L1 ∩ L0

Figure 34. ppΣ, ~zp1q, ~zp0q, ~z`q, uq

(a) If cpvq “ str, then ζpvq P Mreg
k1,k0;hv

pL1, L0; rpvq, r1pvq;β; mv
`q. Here rpvq,

r1pvq P L1 X L0 are points assigned to the two edges of C containing v.

(b) If cpvq “ dj (j “ 0, 1), then ζpvq P Mreg,d
k`1,hv

pLj ;αpvq; m
v
`q. We write

ζpvq “ ppΣpvq, ~zpvq, ~z`pvq, ~wpvqq, uvq.
(c) If cpvq “ s, then ζpvq is an element of Mreg,s

hv
pαpvq; mvq. We write ζpvq “

ppΣpvq, ~zpvq, ~z`pvq, ~wpvqq, uvq.

(d) If cpvq “ D, then ζpvq P ĂM0
hv
pD Ă X;βpvq; mvq. We write ζpvq “

ppΣpvq, ~z`pvq, ~wpvqq;uv; svq.
(3) We assume

lim
aÑ8

forgetpζaq “ forgetpζq.

Here the convergence is by the stable map topology.
(4) We assume forgetpζaq and forgetpζq are source stable.

We take an ε-trivialization pK,U ,Φq in the same way as in Definition 4.2 and obtain
the map u1a,v in the same way as in (4.23) for a P Z` and a vertex v with color D. We can
also define a map Uv : Σvz~wpvq Ñ NDpXqzD for any such vertex v in the same way as in
(4.24). Now we define the notion of convergence limsaÑ8 ζa “ ζ analogous to Definition
4.26, and generalize this definition as in Definition 4.28 to define limaÑ8 ζa “ ζ using
forgetful maps. Finally we can prove the analogue of Proposition 4.29 for strips using a
similar argument.

We next consider Mreg,s
h pα;Hq for α P Π2pXq. We did not define the RGW com-

pactification of this space in Section 3. However, by following an essentially the same
construction as in the definition of MRGW

k`1,hpL;βq, we can define this RGW compactifi-

cation denoted by MRGW
h pα;Hq. The main difference is that the root vertex has color

s instead of d. The definition of the RGW topology is also similar. We can prove an the
analogue of Proposition 4.29 in this case, too.

We finally define the RGW convergence of a sequence of elements of M0pD Ă X;α;Hq
to an element of MpD Ă X;α;Hq. Let X 1 “ PpNDpXq ‘ Cq and D1 “ D0 Y D8.
Then M0pD Ă X;α;Hq (resp. MpD Ă X;α;Hq) can be identified with the quotient
of the moduli space Mreg,spα̂;Hq associated to the pair pX 1,D1q (resp. MRGWpα̂;Hq
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associated to the pair pX 1,D1q) with respect to the obvious C˚ action. Here α̂ is defined
as in Subsection 3.3. Given a sequence ζa PM0pD Ă X;α;Hq, represented by elements
rζa P Mreg,spα̂;Hq, we say ζa converges to ζ P MpD Ă X;α;Hq, represented by rζ P
MRGWpα̂;Hq, if there are complex numbers za such that za ¨ ζa converges to ζ with
respect to the notion of the convergence of the last paragraph. As in the previous cases,
an analogue of Proposition 4.29 holds in this case. We can also generalize the discussion
of this paragraph to the case that we include interior marked points and define the
moduli space MhpD Ă X;α;Hq.

Remark 4.46. In all three cases that we have discussed so far, we can replace H with
m without much change. That is to say, we can discuss convergence of a sequence of
holomorphic maps which intersects the divisor in a prescribed way in all three cases and
prove the analogues of Proposition 4.29.

4.2.5. RGW topology: General Case. We are ready to define the RGW convergence in
the general case. We focus on the moduli space MRGW

k`1,hpL;βq. A similar discussion
applies to the case of strips.

Suppose R` “ pR,mkq and pR1q` “ pR1,mk1q are DD-ribbon trees with interior
marked points. We can define level shrinking and level 0 edge shrinking of such DD-
ribbons as in Section 3. We write pR1q` ě R` if pR1q` is obtained from R` by finitely
many iterations of these operations.

Lemma 4.47. Suppose pR1q` ě R`, and |λ|, |λ1| are the total numbers of levels of R`,

pR1q`. Suppose R̂, R̂1 denote the detailed trees of R`, pR1q`. Then there are a sur-
jective and non-decreasing map levsh : t0, 1, . . . , |λ|u Ñ t0, 1, . . . , |λ1|u and a surjective

simplicial map treesh : R̂Ñ R̂1 with the following properties:

(1) If v P C int
0 pR̂q, then

λ1ptreeshpvqq “ levshpλpvqq.

(2) The inverse image of each vertex by treesh is connected.

(3) Let v P C int
0 pR̂1q be a vertex of level 0. If treesh´1pvq contains a vertex of color

d, then the color of v is d. Otherwise, the color of v is s.
(4) treesh is bijective on the subset of exterior vertices and exterior edges.

Proof. This is obvious in the case of pi, i ` 1q level shrinking and shrinking of a single
level 0 edge. For a composition of level shrinking and level 0 edge shrinking operations,
we can also use the composition of the corresponding maps treesh and levsh. Moreover,
the properties in (1)-(4) are preserved by the composition. �

Now we consider the following situation:

Situation 4.48. Suppose pR1q` ě R` and treesh, levsh are as in Lemma 4.47. Let

ζa PM0ppR1q`q be a sequence and ζ PM0pR`q. Let rζa P ĂM0ppR1q`q and rζ P ĂM0pR`q
denote elements representing ζa and ζ, respectively. We write

rζ “ pζpvqq, rζa “ pζapv
1qq,

where v belongs to C int
0 pR̂q (resp. v1 belongs to C int

0 pR̂1q) and ζpvq P ĂM0pR`, vq (resp.

ζapv
1q P ĂM0ppR1q`, v1q). We require that forgetpζaq converges to forgetpζq in the stable

map topology. Furthermore, we assume ζa, ζ are source stable.

For ζa and ζ as in Situation 4.48, we wish to explain when ζa converges to ζ in the
RGW topology. We firstly need to introduce some notations:
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(1) For v P C int
0 pR̂q, if cpvq “ d, then ζpvq PMreg,d

k`1,hv
pαpvq; mvq, and we write ζpvq “

ppΣpvq, ~zpvq, ~z`pvq, ~wpvqq, uvq. For v1 P C int
0 pR̂1q, if cpv1q “ d, then ζapv

1q P

Mreg,d
k`1,hv1

pαpv1q; mv1q, and we write ζapv
1q “ ppΣapv

1q, ~zapv
1q, ~z`a pv

1q, ~wapv
1qq, ua,v1q.

(2) For v P C int
0 pR̂q, if cpvq “ s, then ζpvq PMreg,s

hv
pαpvq; mvq, and we write ζpvq “

ppΣpvq, ~zpvq, ~z`pvq, ~wpvqq, uvq. For v1 P C int
0 pR̂1q, if cpv1q “ s, then ζapv

1q P

Mreg,s
hv1

pαpv1q; mv1q, and we write ζapv
1q “ ppΣapv

1q, ~zapv
1q, ~z`a pv

1q, ~wapv
1qq, ua,v1q.

(3) For v P C int
0 pR̂q, if cpvq “ D, then ζpvq P ĂM0

hv
pD Ă X;βpvq; mvq, and we

write ζpvq “ ppΣpvq, ~z`pvq, ~wpvqq;uv; svq. For v1 P C int
0 pR̂1q, if cpv1q “ D,

then ζapv
1q is an element of ĂM0

hv1
pD Ă X;βpv1q; mv1q, and we write ζapv

1q “

ppΣapv
1q, ~z`a pv

1q, ~wapv
1qq;ua,v1 ; sa,v1q.

(4) For v1 P C int
0 pR̂1q, we define:

R̂pv1q “ treesh´1pv1q Ă R̂.

For a sufficiently small ε, we take an ε-trivialization pK,U ,Φq of the universal family

at the source curve ξ of ζ in the sense of Definition 4.8. For v P C int
0 pR̂q, we define

Kpvq “ K X Σpvq.

Suppose v P R̂pv1q with v1 P C int
0 pR̂1q. If a is large enough, then we may regard

Kpvq Ă Σapv
1q by z ÞÑ Φpz, ξaq, where ξa is the source curve of forgetpζaq. (See Figure

35.) By Definition 4.8 (3), ũa,vpzq :“ ua,v1pΦpz, ξaqq converges to uv in C2 topology on
Kpvq. We denote by ũa,v the restriction of ũa,v1 to Kpvq.

ΣΣa

Σ(v)K(v)
Φ(z, ξa)

Σa(v )

Figure 35. Kpvq and Σapv
1q

Suppose cpvq “ D and cpv1q “ s or d. Then for sufficiently large a, we may assume
that for any z in Kpvq, we have ũa,vpzq P Nďc

D pXq in the same sense as in (4.22). Thus
ũa,v may be regarded as a map of the following form

(4.49) ũa,v : Kpvq Ñ NDpXq.

We also regard the section sv of u˚vNDpXq as a map

(4.50) Uv : Σvz~wpvq Ñ NDpXqzD
If cpv1q “ D, then we use sa,v1 and ũa,v to obtain

(4.51) rUa,v : Kpvq Ñ NDpXq.

Note that in this case cpvq “ D automatically.
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Definition 4.52. We say that ζa converges to ζ and write

lims
aÑ8

ζa “ ζ,

if for each j P t1, . . . , |λ|u, there is a sequence ρa,j P C˚ and for each ε ą 0, there exist
an ε-trivialization as above and an integer Npεq such that the following properties hold

for any v P C int
0 pR̂q and a ě Npεq:

(1) Suppose cpvq “ D and cpv1q “ s or d with treeshpvq “ v1. Then:

dC2

´

Dil1{ρa,λpvq ˝ ũa,v, Uv

¯

ă ε.

(2) Suppose cpvq “ D and cpv1q “ D with treeshpvq “ v1. Then:

dC2

´

Dil1{ρa,λpvq ˝
rUa,v, Uv

¯

ă ε.

(3) If j ă j1 and levshpjq “ levshpj1q, then

lim
aÑ8

ρa,j
ρa,j1

“ 8.

This definition is very similar to Definition 4.26. The only difference is ζa PM0pR1q
and it may have several levels. We need to define convergence for each level. In Definition
4.52, we use the identification in (4.25) and the product metric on NDpXqzD to define
C2 norms in Items (1) and (2).

Analogous to Definition 4.28, we can extend the definition of convergence to the case
that the source curves of ζa and ζ may not be stable. Finally we can include the case
when ζa PM0pR1aq where R1a varies, using the fact that there is only a finite number of
R1 with R1 ě R. This completes the definition of convergence with respect to the RGW
topology. If ζa converges to ζ in this topology, we write:

(4.53) lim
aÑ8

ζa “ ζ.

Lemma 4.54. For any sequence ζa P MRGW
k`1,hpL;βq, there exists a subsequence which

converges in the sense of (4.53).

Proof. This is a consequence of Proposition 4.29 and similar results for strips and
spheres. �

Definition 4.55. Let A ĂMRGW
k`1,hpL;βq. Define the closure of A, denoted by Ac, to be

the set of all the limits of sequences of elements of A in the sense of (4.53).

Lemma 4.56. The closure operator c satisfies the Kuratowsky’s axioms. Namely, (a)
Hc “ H, (b) A Ď Ac, (c) pAcqc “ Ac and (d) pAYBqc “ Ac YBc.

Proof. (a), (b) and (d) are obvious. In order to check (c), let ζa,b, ζa, ζ PMRGW
k`1,hpL;βq

for a, b P Z`. We assume

(4.57) lim
bÑ8

ζa,b “ ζa, lim
aÑ8

ζa “ ζ.

It suffices to prove that there exists bpaq such that limaÑ8 ζa,bpaq “ ζ.
Using a result similar to Lemma 4.11 (which can be proved in the same way), we may

assume that ζa,b, ζa, ζ are all source stable and replace lim by lims. Since for each DD-
ribbon tree R`, there are only finitely many DD-ribbon trees pR1q` with pR1q` ě R`,
we may also assume that there are DD-ribbon trees R,R1,R2 such that R2 ě R1 ě R
and

ζa,b PM0pR2q, ζa PM0pR1q, ζ PM0pRq.
Moreover, Lemma 4.47 provides us with levsh : t0, . . . , |λ|u Ñ t0, . . . , |λ1|u, levsh1 :

t0, . . . , |λ1|u Ñ t0, . . . , |λ2|u, treesh : R̂Ñ R̂1 and treesh1 : R̂1 Ñ R̂2.
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ζa,b ζa ζ

v

v

v

 (0,1) level shrinking

and

level 0 edge shrinking

dd dds

λ = 1

λ = 0

λ = 2

λ = 3

Figure 36. ζa,b, ζa, ζ (graph)

ζa,b ζa ζ

v{
v

v

Figure 37. ζa,b, ζa, ζ

The assumptions in (4.57) gives us non-zero complex numbers ρa,j and ρab,j1 where 1 ď
j ď |λ| and 1 ď j1 ď |λ1|. We denote these numbers with ρa,H;j and ρab,a;j1 to distinguish
them from ρab,H;j which shall be introduced momentarily to prove limaÑ8 ζa,bpaq “ ζ.

We extend these constants to the case that j “ 0 and j1 “ 0 by setting ρa,H;0 “ ρab,a;0 “

1.
Now we define

(4.58) ρab,H;j “ ρa,H;j ¨ ρab,a;levshpjq P C˚.

For each a, there is an integer Npaq such that if b ě Npaq, then for any k, k1 with
0 ď k ă k1 ď |λ1| and levsh1pkq “ levsh1pk1q, we have:

ˇ

ˇ

ˇ

ˇ

ρab,a;k

ρab,a;k1

ˇ

ˇ

ˇ

ˇ

ě a ¨ max
0ďj1ăjď|λ|

p

ˇ

ˇ

ˇ

ˇ

ρa,H;j

ρa,H;j1

ˇ

ˇ

ˇ

ˇ

q

Thus it is easy to see that if bpaq ě Npaq, then we can conclude for j ă j1 with
levsh1 ˝ levshpjq “ levsh1 ˝ levshpj1q that:

lim
aÑ8

ρabpaq,H;j

ρabpaq,H;j1
“ 8.
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Next, we show that Definition 4.52 (1) and (2) are satisfied for appropriate choices of
bpaq ě Npaq.

Let v P C int
0 pR̂q, v1 “ treeshpvq, v2 “ treesh1pv1q, j “ λpvq and j1 “ λ1pv1q. We

also assume that cpvq “ D, cpv1q “ D and cpv2q “ d. We also fix an ε-trivialization
pK,U ,Φq of the universal family in the sense of Definition 4.8 at the source curve ξ
of ζ. Let Uv : Σpvq Ñ NDpXq be defined from the data of ζ in the same way as

in (4.50). We define rUa,v : Kpvq Ñ NDpXq analogous to (4.51). Finally, we define
ũab,v : Kpvq Ñ NDpXq from the data of ζab as in (4.49).

By assumption

(4.59) dC2

´

Dil1{ρa,H;j
˝ rUa,v, Uv

¯

ă δ

for sufficiently large a and

(4.60) dC2

´

Dil1{ρab,a,j1 ˝ ũab,v, U
1
a,v1

¯

ă
1

a

if b is a large integer depending on a. We denote one such b by bpaq, which is also greater
than Npaq. Since Dilc is an isometry, these two inequalities imply

dC2

´

Dil1{ρabpaq,H;j
˝ ũabpaq,v, Uv

¯

ă 2δ

if a is large enough so that (4.59) and (4.60) hold and 1
a ă δ. This verifies Definition

4.52 (1) in the case cpvq “ D, cpv1q “ D and cpv2q “ d. The other cases and Definition
4.52 (2) can be proved in the same way. �

The above lemma completes the definition of the RGW topology. The following
theorem asserts that the RGW topology has the desired properties in the case of moduli
spaces of discs.

Theorem 4.61. The topological space MRGW
k`1,hpL;βq is compact and metrizable. Eval-

uation at any of the boundary marked points (resp. interior marked points) determines
a continuous map MRGW

k`1,hpL;βq Ñ L (resp. MRGW
k`1,hpL;βq Ñ X). Moreover, for any

DD-ribbon tree R`, the space

(4.62) MpR`q :“M0pR`q Y
ď

pR1q`ăR`
M0ppR1q`q.

is a closed subset of MRGW
k`1,hpL;βq.

Proof. Suppose R is a DD-ribbon tree of type pβ, kq with detailed ribbon tree R̂. Suppose

also mk : t1, . . . , hu Ñ C int
0 pR̂q is a marking map for interior points. Then R` :“

pR,mkq describes a stratum of MRGW
k`1,hpL;βq, and we assume that ζ0 is a source stable

element of this stratum. We wish to construct a countable neighborhood basis for ζ0.
We fix a 1

n -trivialization pK,U ,Φq of the universal family at ζ0. We define Bnpζ0q to

be the set of the elements ζ of MRGW
k`1,hpL;βq, which satisfy the following properties:

(i) There is a DD-ribbon tree pR1q` such that ζ P M0ppR1q`q and pR1q` ě R`.

Suppose a representative rζ “ pζpv1qq is fixed for ζ.
(ii) The source curve of ζ belongs to U .
(iii) The distance between the stable maps forgetpζ0q and forgetpζq with respect to a

fixed metric representing the sable map topology is less than 1
n .

(iv) For each v P C int
0 pR̂`qq, we define Kpvq in the same way as in (4.21). Let |λ| be

the number of the levels of R`. Then for each 0 ď j ď |λ|, there is a constant
ρj such that the following conditions are satisfied.
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(1) Let cpvq “ D, cpv1q “ s or d with treeshpvq “ v1. We define ũv : Kpvq Ñ
NDpXq and Uv : Σpvq Ñ NDpXq as in (4.49) and (4.50). Then the C2-
distance of Dil1{ρλpvq ˝ ũv and Uv is less than 1

n .

(2) Let cpvq “ D, cpv1q “ D with treeshpvq “ v1. We define rUv : Kpvq Ñ NDpXq
and Uv : Σpvq Ñ NDpXq as in (4.51) and (4.50). Then the C2-distance of

Dil1{ρλpvq ˝
rUv and Uv is less than 1

n .

(3) ρ0 “ 1 and for 1 ď j ď |λ| with levshpjq “ levshpj´1q, we have ρj ą n¨ρj´1.

It is easy to see that Bnpζ0q is an open set containing ζ. Moreover, any open neigh-
borhood of ζ0 contains Bnpζ0q for large values of n. Using the by now familiar trick
of forgetting interior marked points, we can extend this construction for any point
ζ0 PMRGW

k`1,hpL;βq. Thus MRGW
k`1,hpL;βq is a first countable topological space.

The topology of each stratum of MRGW
k`1,hpL;βq is given by the stable map topology.

In particular, it is a separable metric space. Since there are also countably many strata,
we can form a sequence tζiu of the elements such that the subsequence of the elements
belonging to a given stratum forms a dense subset. Then it is easy to see that tBnpζiqu
gives a countable basis for the RGW topology of MRGW

k`1,hpL;βq. Since MRGW
k`1,hpL;βq is

sequentially compact (Lemma 4.54) and second countable, it is a compact topological
space.

Next we show that MRGW
k`1,hpL;βq is Hausdorff. Since the first axiom of countability is

satisfied, it suffices to show that any convergent sequence has a unique limit. Let ζa be
a sequence which converges to both ζ and ζ 1. The stable maps forgetpζq and forgetpζ 1q
are equal to each other, because the stable map topology is Hausdorff ([FO99, Lemma
10.4]). Using a lemma similar to Lemma 4.11, we may assume that ζa, ζ, ζ 1 are all
source stable. In this case, it is straightforward to see that ζ “ ζ 1.

The space MRGW
k`1,hpL;βq is compact and Hausdorff, hence it is a regular space. There-

fore, Urysohn’s metrization theorem implies that MRGW
k`1,hpL;βq is metrizable.

The claim about continuity of evaluation maps at the marked points follows from
the facts that the RGW topology is stronger than the stable map topology and these
evaluation maps are continuous with respect to the stable map topology. Finally it is
an immediate consequence of the definition that the space in (4.64) is closed. �

One can prove similar results as in the above theorem for the case of strips and spheres
with the same arguments.

Theorem 4.63. The topological space MRGW
k1,k0,h

pL1, L0; p, q;βq is compact and metriz-
able. Evaluation at any of the boundary or interior marked points determines a contin-
uous map. Moreover, for any SD-ribbon tree R`, the space

(4.64) MpR`q :“M0pR`q Y
ď

pR1q`ăR`
M0ppR1q`q.

is a closed subspace of MRGW
k1,k0,h

pL1, L0; p, q;βq.

Theorem 4.65. The topological space MpD Ă X;α; mq is compact and metrizable.
Evaluation at any of the (interior) marked points determines a continuous map from the
moduli space to D. There also exists a continuous map

(4.66) forget : MpD Ă X;α; mq ÑM``1pD;αq.

such that it coincides with (3.22) on M0pT 0
α;mq via the identification (3.47). Moreover,

for any decorated rooted tree T , the space

(4.67) MpD; T q :“M0pD; T q Y
ď

T 1ăT
M0pD; T 1q
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Figure 38. Configuration associated to the decorated rooted tree in Figure 9

is a closed subspace of MpD Ă X;α; mq.

Proof. To prove existence of (4.66), let pxv; v P C ins
0 pT qq P ĂM0pD; T q where xv “

rpΣv, ~wvq;uv; svs. We glue pΣv, ~wvq along the tree T in an obvious way to obtain a
marked Riemann surface pΣ, ~wq. Since an element pxv; v P C

ins
0 pT qq lies in the fiber

product (3.37), various maps uv can be glued to define a continuous map u : Σ Ñ D.
We thus obtain an element of M``1pD;αq. It is easy to see that this construction
induces a map as in (4.66). The continuity of the map (4.66) is immediate from the
definition of the RGW topology. The remaining claims can be verified in the same way
as in Theorem 4.61. �

Example 4.68. Figure 38 sketches an element of M0pD; T q corresponding to the deco-
rated rooted tree in Figure 9. This element of the moduli space is obtained from Figure
8 by resolving the double point which is the intersection of xv3 and xv4 . The new
component xv13 in Figure 38 is obtained by this gluing construction.

Remark 4.69. Using Lemma 3.25, the restriction of the map in (4.66) gives an open
embedding from M0pD Ă X;α; mq into M0

``1pD;αq. A standard dimension formula

from Gromov-Witten theory shows that the virtual dimension of M0
``1pD;αq is equal

to

(4.70) c1pDq ¨ α` 2 dimCX ` 2p`` 1q ´ 8.

To be more precise, the compact space M``1pD;αq admits a Kuranihsi structure (with-
out boundary) whose dimension is given in (4.70) [FO99]. In the subsequent paper of
this series, we define a Kuranishi structure on MpD Ă X;α; mq such that its restric-
tion to the open subspace M0pD Ă X;α; mq agrees with the Kuranishi structure of
M``1pD;αq via the the homeomorphism forget in (4.66). (The relationship between the
map forget and the Kuranishi structures on the compactifications is more delicate.) In
particular, the dimension of MpD Ă X;α; mq is also given by the formula in (4.70).
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