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Abstract

Surgery exact triangles in various 3-manifold Floer homology theories provide an important
tool in studying and computing the relevant Floer homology groups. These exact triangles relate
the invariants of 3-manifolds, obtained by three different Dehn surgeries on a fixed knot. In this
paper, the behavior of SU(N)-instanton Floer homology with respect to Dehn surgery is studied. In
particular, it is shown that there are surgery exact tetragons and pentagons, respectively, for SU(3)-
and SU(4)-instanton Floer homologies. It is also conjectured that SU(N)-instanton Floer homology
in general admits a surgery exact (IV + 1)-gon. An essential step in the proof is the construction of a
family of asymptotically cylindrical metrics on ALE spaces of type A,,. This family is parametrized
by the (n — 2)-dimensional associahedron and consists of anti-self-dual metrics with positive scalar
curvature. The metrics in the family also admit a torus symmetry.
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1 Introduction

In 1985, Casson introduced an integer-valued invariant of integral homology spheres [AM90]. Casson’s
invariant for an integral homology sphere Y, often denoted by A(Y"), was later reinterpreted by Taubes as
an algebraic count of non-trivial flat SU(2)-connections on Y [Tau90]. Remarkably, Casson developed a
series of formulas that describes how A behaves with respect to Dehn surgery on knots. These surgery
formulas allowed him to identify the mod 2 reduction of X in terms of Rochlin invariant. Consequently,
he showed that the Poincaré conjecture holds for an integral homology sphere whose Rochlin invariant is
non-trivial.

Suppose K is a knot in an integral homology sphere Y. For a pair of co-prime integer numbers p and
q, let Y}, denote the result of performing (p/q)-surgery on K. The 3-manifolds Y; /,(K) are integral
homology spheres and their Casson’s invariants satisfy the following surgery formulas [AM90]:

1 d?

AV (g41) (K)) = AY1yq(K)) + 5 5 Ak (1) (1.1)

where A (t) is the symmetrized Alexander polynomial of K. Therefore, we have:

AY1)gr2)(K)) = 2A(Y1)(g1) (K)) + A(Yy/4(K)) =0 (1.2)
This identity implies that A(Y},(K)) = aq + b for constants a and b that depend only on Y and K.

Casson invariant and surgery formulas (1.1) and (1.2) can be categorified in terms of Floer’s instanton
homology. For an integral homology sphere Y, Floer used anti-self-dual SU(2)-connections on R x Y’
to define a Z/8-graded abelian group, which we denote by 12(Y") [Flo88]!. Floer also used a similar
construction to define an instanton homology group 12(Y, ) for a pair of a 3-manifold Y and v €
H?2(Y,Z) such that the pairing of y and an oriented embedded surface in Y is an odd number [F1095,
BDO95]. A pair (Y, ) is called admissible if either it satisfies this condition or Y is an integral homology
sphere. For an integral homology sphere Y, the integer number A\(Y") is half of the Euler characteristic of
I2(Y) [Tau90,Flo88]. Moreover, for a knot K in Y, the instanton Floer homology groups I3 (Y7 /(44 1) (K))
and I3 (Y} /,(K)) fit into an exact triangle as follows [Fl095, BD95, Scal5]:

I3 (Yo(K), 70) L5 (Y1)(g+1)(K)) (1.3)

\/

I (Y1/4(K))

Here Yy(K), the O-surgery on K, has the same homology as S' x S2, and 7 is a generator of
H?(Yy(K),Z). The Euler characteristic of the instanton Floer homology group of the admissible pair
(Yo(K),~0) is equal to —%A & (1). In the above diagram, the horizontal map has degree 1 and the
remaining two maps have degree 0. Therefore, (1.1) is an immediate consequence of Floer’s surgery exact

"Here the superscript 2 stands for the choice of SU(2) as the structure group of the connections involved in the definition of
instanton Floer homology.



triangle. There is also an exact triangle in correspondence to the identity in (1.2) which has the form in
(1.4). (See the discussion following Theorem 1.6.)

I (Y1/4(K)) L (Yi)(g+2) (K)) (1.4)

\/

L2 (Y1) (g+1) (K)) @ L2(Y1(g41) (K))

Both Casson invariant and instanton Floer homology have various extensions obtained by replacing
SU(2) with special unitary groups of higher rank. Flat SU(3) connections on an integral homology sphere
were used in several ways to define analogues of Casson invariant [BH98, BHKO1, CLMO2]. In [KM11],
Kronheimer and Mrowka used SU(V)-Yang-Mills gauge theory to define instanton Floer homology
IY(Y,~) for an N-admissible pair of a 3-manifold Y and a cohomology class v € H?(Y,Z). For N > 3,
(Y,~) is N-admissible, if there is an oriented embedded surface in Y whose pairing with -y is coprime to
N. A pair is 2-admissible, if it is admissible in the above sense. If N > 3 and Y is an integral homology
sphere, then ~y is necessarily trivial and (Y, ) is not N-admissible. Therefore, SU(V)-instanton Floer
homology is not presently defined for integral homology spheres and the relationship between SU(3)
Casson invariants and Floer homology is not clear.

Surgery formulas and surgery exact triangles as above are ubiquitous in low dimensional topology.
Motivated by Floer’s exact triangle, analogous exact triangles were constructed for other 3-manifold
Floer homologies [OS04, KMOSO07]. A closely related exact triangle is also built into the definition of
Khovanov homology [KhoOO]. The Jones polynomial [Jon85] or more generally the HOMFLY polynomial
[FYH™85] are also defined by analogues of surgery formula (1.1) in the context of knot invariants. Our
main concern in this article is to investigate how SU(NV)-instanton Floer homologies behave with respect
to Dehn surgery.

The values of SU(3)-Casson invariant constructed in [BHKO01] have been computed for Dehn surgeries
on torus knots in S® [BHKO05]. In particular, it is shown that this invariant, denoted by 7, has the following
form:

7(S7)4(K)) = ag® + bg

which is in contrast to the linear behavior of \. However, 7 for these special choices of K satisfy the
following modified version of (1.2):

T(Y1g(K)) = 37(Y1(g41) (K)) + 37(Y1/(g42) (K)) = 7(Y1/(q45)(K)) = 0

Therefore, one might hope that there is a Casson type invariant Ay of integral homology spheres, defined
by counting SU(NN) flat connections, which satisfies the following surgery formula:

N

2, (7) (=1)AN (Vi g1y (K)) = 0 (15)

1=0

In this article, we construct a surgery exact polygon for SU(N )-Floer homology in the case that N = 2, 3
or 4. This surgery exact polygon can be regarded as a categorification of (1.5).



1.1 Statement of Results

Fix an integer N > 2, a 3-manifold ) with torus boundary and an oriented 1-manifold w embedded in the
interior of ). Let A and i be two curves on the boundary of Y such that X - u, the algebraic intersection
of A and , is equal to 1. Let Y; be the closed 3-manifold obtained by gluing the solid torus S' x D? such
that {point} x 0D? is glued along a loop in &Y homologous to ij + . We also denote K; for the core
of the solid torus S x D? in Y;. For each subset S of {0,1,..., N — 1} with i elements, consider the
following cohomology class in Y;:

vs = P.D.(w + 05 - K;) € H*(Y;,Z)

where og denotes the sum of the elements of .S. The main result of the present pair can be summarized as
in Theorem 1.6. A more detailed version of this theorem is stated as Theorem 6.26 in Section 6.

Theorem 1.6. Suppose ) and w are chosen such that (Y;,~s) is N-admissible for any i and any set
Sc<{0,1,...,N — 1} with i elements. If N < 4, then SU(N )-instanton Floer homology associates an
exact (N + 1)-gon to (Y, w). The chain complex associated to the i*" vertex of this exact (N + 1)-gon is
equal to:

P e (Vi,vs)
IS|=i

where €Y (Y;,~s) denotes the instanton Floer complex associated to the admissible pair (Y;, ~s).

An exact n-gon consists of n chain complexes and homomorphisms between any pair of chain complexes
that are supposed to satisfy a series of identities. The definition of exact n-gons, as generalization of exact
triangles, is discussed in Section 2. In general, we also believe the following conjecture holds:

Conjecture 1.7. Theorem 1.6 holds without the assumption N < 4.

Suppose ) is given by the complement of a knot K in an integral homology sphere Y. Let m be the
meridian of K and [ be the longitude of K fixed by a Seifert surface and oriented such that [ - m = 1. Let
A and p be closed curves on the boundary of ) whose homology classes are given as below:

[Al = [m + (¢ +2)] [ = [=1]

Then Y; is diffeomorphic to the integral homology sphere Y (442 (/), the manifold obtained by
1/(q + 2 — i)-surgery on K. If we assume N = 2, then all pairs (Y}, vs) are admissible. Therefore, 1.6
gives rise to an exact triangle of the Floer chain complexes of the 3-manifolds Y (q4-2)(K), Y1 /(g+1)(K)
and Y7, (K). As it is expected, any exact triangle, in the sense defined in Section 2, induces an exact
sequence of homology groups. In this case, the resulting exact sequence of Floer homology groups is
given in (1.3).

For n > 4, an exact n-gon does not induce an n-periodic exact sequence at the level of homology
groups. Nevertheless, there are spectral sequences associated to an exact n-gon generalizing the exact
sequence of homology groups for n = 3. These spectral sequences are discussed in Proposition 2.6. An
immediate consequence of Proposition 2.6 is the following corollary of Theorem 1.6:



Corollary 1.8. Suppose N, Y and w are given as in Theorem 1.6. Then:

(i) there is a spectral sequence that converges to the trivial group and its second page is equal to:

P P (Vi)

0<i<N |S|=i

(ii) there is a spectral sequence that converges to 1Y (Y, Vgs) and its second page is equal to:

P D n¥,vs).

1<i<N [§]=i

Theorem 1.6 also has a consequence at the level of Euler characteristics. The instanton Floer homology
group IV (Y, ~) has a canonical Z/2Z-grading. (See Subsection 6.1.) In particular, we can use this grading
to define Euler characteristic Ay (Y, ) for an N-admissible pair (Y, 7).

Corollary 1.9. Suppose N, Y and w are given as in Theorem 1.6. Let v denote a generator of the kernel
of the map H1(0)) — H1()). Then we have:

N
D=1 DT AN (Y, ys) = 0. (1.10)
i=0 |S|=i

If Nisodde; =0, and if N is even, ; = Z;Zl 63 where:

0 if sign((A +jp) - v) = sign((A + (j = Dp) - v);
/ 1 if sign((A + ju) -v) = —sign((A+ (j = Du) - v); (L11)
0 (A+(—Dp)-v=0; '

I (A+jp)-v=0.

In particular, if v = X or p, then all constants €; are zero.

Hypothetically assume that the definition of SU(V)-instanton Floer homology can be extended to integral
homology spheres as finitely generated abelian group such that Theorem 1.6 continues to hold. Then we
would be able to apply Corollary 1.9 to knot complements in integral homology spheres and derive (1.5).

1.2 Outline of Contents

To prove Theorem 1.6, we need to construct a series of maps between various instanton Floer chain
complexes associated to the 3-manifolds Y. These maps are defined with the aid of a family of 4-
manifolds W,ﬁ , which are constructed in Section 3. We shall define a family of metrics on each Wg that is
parametrized by an associahedron. Section 4 of the paper is devoted to the definition of this family of
metrics. The main result of this relatively long section is summarized in Theorem 4.56. An impatient
reader may want to focus only on understanding the statement of Theorem 4.56 after glancing at the rest
of Section 4.



Counting solutions of the Anti-Self-Duality equation with respect to the families of metrics on 4-
manifolds W,ﬁ gives rise to the definition of maps of the exact (N + 1)-gon in Theorem 1.6. A priori,
these maps satisfy the identities required for an exact (N + 1)-gon with some additional terms. The
additional terms, which we need to show that they sum up to zero, can be divided into two parts. In order
to obtain vanishing of the first series of maps, we have to make a careful choice of our families of metrics
in Section 4. We achieve this goal using Gibbons-Hawking metrics on the ALE spaces of type An_1. The
main part of the proof of Theorem 1.6 is to show that the additional terms of the second type give us the
zero map. The essential step to carry out this task is given in Subsection 5.3. In the remaining subsections
of Section 5, we review some general facts about the moduli space of ASD equation.

The proof of the main theorem is given in Section 6. Section 7 is devoted to some technical results
about regularity of the moduli spaces involved in our construction. Most steps in the proof of Theorem
1.6 can be replicated to address Conjecture 1.7. Thus we work with arbitrary NV for the most of the paper.
Only in Subsection 7.6, we have to limit ourselves to the case that N < 4. Reproducing the result of
this subsection for arbitrary /N seems to require new gluing techniques for the moduli spaces of ASD
connections, and we hope to address that issue elsewhere. The statement of our main theorem is motivated
by the role of physicists’ Coulomb branch in SU(NV)-instanton Floer homology. We also hope to discuss
this circle of ideas in a separate paper.

1.3 Conventions

We use the following orientation conventions throughout the paper. Let M be a manifold with boundary.
Unless otherwise specified, the boundary of M is oriented with the outward-normal-first convention. If L
is a U(1)-bundle over an oriented manifold, we use the fiber-first convention to orient the total space L.
In this paper, L(k, 1), as an oriented 3-manifold, is identified with the U(1)-bundle of Euler number &
over the 2-dimensional sphere. If M and N are two oriented manifolds, then M x N is oriented by the
first-factor-first convention. Unless otherwise is specified, all manifolds in the present article are oriented.
We will also write — M for the manifold M with the reverse orientation.

In various places in the paper, we need bump functions to glue differential forms, metrics, etc. on
different manifolds. Thus we fix two smooth functions:

©1, 2 : [0,1] — [0,1] (1.12)

such that ¢1 + 3 = 1, ¢1(z) = 1 0n [0, 3] and p3(z) = 1 on [2, 1]. These functions will be used in
several places in the paper.

We will write [n] for the set of integers {0, 1,2,...,n — 1}. In general, if we write {z1,z2,...,2,}
for a finite subset of R, then we assume that x; < 9 < -+ < .

In what follows, all chain complexes, A -categories, etc. are defined over Z/2Z. In particular,
Theorem 1.6 is proved only for instanton Floer homology with coefficients in Z/2Z. We hope this allows
the main geometrical ideas of the paper to stand out. Although we have not checked the details, we believe
studying orientations of the moduli spaces involved in the proof of Theorem 1.6 would give rise to an
extension of Theorem for arbitrary coefficient ring.
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2 Homological Algebra of the Surgery Polygon

In this section, we define exact n-gons and exact n-cubes. It is shown in Subsection 2.2 that any exact n-
cube induces an exact (n + 1)-gon. We shall obtain the exact (N + 1)-gon of Theorem 1.6 by constructing
an exact N-cube and then applying this algebraic construction.

2.1 Exact n-gons

A slight variation of the following proposition, commonly called triangle detection lemma, appears
in Oszvéth and Szabd’s pioneering work [OS05]. The original idea seems to go back to Seidel and
Kontsevich.

Proposition 2.1. For each i € Z/3Z, let (C;,d;) be a chain complex, with homology H;. Suppose that
forall i € Z/3Z we are given maps

fi:Ci—>Ciy1 9i:Ci— Cipg hi: C; — Ciys,

which satisfy the following properties:
2 =
dit1fi + fidi =

diy2gi + fir1 fi + 9idi =
diy3hi + fivagi + giv1fi + hid; =

_ o o o

Then the map

Ci o), Cone(fir1) := (Cig1 ® Ciyo[1], dig1 + dit2 + fit1)

is a chain map which induces an isomorphism on homologies. Moreover, the following sequence of
homology groups is exact:

H, (fi)= Hii
(fi+k A)*
Hiyo

Proposition 2.1 motivates the following definition:

Definition 2.2. An exact n-gon consists of:



(i) a chain complex (C},d;) for each j € Z such that (Cj1r, dj1n) = (C}, d;);

(i1) a homomorphism f,z for each pair (j, k) of the elements of Z with j < k& < n + j such that

i+n _ pi
j+n _'ff
Moreover, the above homomorphisms are required to satisfy the following conditions:

: dif! + fld; l—k<n
kei _ L e 2.3
2 fEh {dlf;+ffdj+1 l—k=mn @3

J<k<l

Proposition 2.4. Let (C}, fg) be an exact n-gon, let C = (—B?:_& Cj, and define an endomorphism of C

by: )
D = E] dj+- }: fg.

0<j<n—1 0<j<k<n—1

Then (C, D) is an acyclic complex. Moreover, if C} = Ci41 @ - - - @ Ciyn—1 and the endomorphism D;

of C! is defined by:
D= Y di+ Y fi

i<j<n+i i<j<k<n+i

then (C!, D}) is homotopy equivalent to (C;, d;).

Proof. Since the homomorphisms d; are differential and the maps f,z satisfy (2.3), the endomorphism D
is a differential. Consider the endomorphism of C' given by

K= Y I

0<j<k<n—1
Identities in (2.3) imply that DK + K D — Id is a nilpotent endomorphism of C, hence (C, D) is acyclic.

For the second part, without loss of generality, we can assume that 7+ = 0. We can again use (2.3) to
show that Dy, is a differential and the maps F : Cy — C{; and G : C{; — Cy, defined as below, are chain
maps:

0
1

0
2

F = G=(f 2 . )

;

n—1
The chain maps F' and G determine a homotopy equivalence of Cp and C{). The map GF is homotopic
to Id using the homotopy given by f2. The map F'G is homotopic to an automorphism of C}, using the

homotopy:
K= > fiy

1<j<k<n—1

10



Remark 2.5. Note that an exact n-gon need not give rise to an exact sequence on homology! For instance,
we could consider the 4-gon

Co=Cy=12/2Z2  Cy=C35=0

where all the differentials are equal to zero. We also define fjj ™2 to be 1 and all the remaining maps to be
zZero.

Corollary 2.6. Let (C}, f,ﬂ) be an exact n-gon. Then:

(i) there is a spectral sequence that converges to the trivial vector space and its second page is equal
to:
D H.(C)).
0<j<n—1
The differential on this page is given by:

Z ( ;+1)*;

0<j<n—2

(ii) there is a spectral sequence that converges to H,(C;) and its second page is equal to:
D H.(C)).
i<j<n+i
The differential on this page is given by:

Z ( ;+1)*'

i<j<n+i—1

Proof. Take the filtration Fy > F} D --- D F,,_j of (C, D) where F; = C; @ - - - ® Cy,—1. The spectral
sequence associated to this filtration has the desired properties in the first part by Proposition 2.4. For the
second part, without loss of generality, we can assume that £ = 0. Then the filtration ; > --- 2 Fj,_;
on C{, from Proposition 2.4 gives the desired spectral sequence. O

Corollary 2.7. Let (C}, fg) be an exact n-gon. Suppose that each Cj admits a Z,/2Z-grading such that

f,Z has degree k — j — 1 whenever 0 < j < k < n — 1. Let x(C}) denote the Euler characteristic of C;.
Then:

11



2.2 Exact n-cubes

Next, we describe a structure called an exact n-cube, from which an exact (n + 1)-gon can be constructed.
We first define a directed graph G,, with vertices labeled by the subsets of [n] and edges:

e Bgi:S — Su{i} wheneveri ¢ S < [n].

e §: [n] — ¢J which is called the connecting edge.

A length k (directed) path in Gz, is defined as a sequence of k consecutive edges. We only deal with paths
with length at most n + 1. These paths can be divided into two types depending on whether they contain
the connecting edge or not. A path of the first type can be described by a pair (S, o) where S c [n] and
o : [k] — [n]\S is an injection. This path is the sequence of edges

S—Su{o(0)} > Su{o(0),0(l)} > > Sulmo

A path of the second type can be described by a pair (o, 7) where o : [k] — [n] and 7 : [[] — [n] are
injections with disjoint images. This path is the sequence of edges:

S =[n]\Imo — S L {o(0)} - S L {c(0),0(1)} > - > [n] > & - {7(0)} > -+ > Im7

Suppose we are given a chain complex (Cyg, dg), for each vertex S, and a homomorphism f, : Cs —
C'p, for each path ¢ from a vertex S to a vertex T'. If ¢ is a path of the first type (respectively, second type)
corresponding to the pair (S, o) (respectively, (o, 7)), then f; is also denoted by fs . (respectively, f5 ;).
For any two vertices S and T', which are connected to each other by a path of length at most n + 1, define:
frﬁ : Cg — C'7 as follows:

f IS“ = Z fo-

q:S—T

Definition 2.8. We call ({Cs}, {f,}) an exact n-cube if the following equalities hold:

dff + ffd="Y, IT13 if § < T (2.9)
SCRCT
dff + f2d =Y fifR, if [T| < |S|and S # T; (2.10)
SSR
or RCT
dff + fRd=1+ > fff, iftS =T (2.11)
SSR
or R&T

Any exact n-cube gives rise to an exact (n + 1)-gon. Let C; := @|S|:j Cs where 0 < j < nand
define f,g : Cj — Cy, by:
flo= D) 7
S|=j
T|=k

The the chain complexes C'; and the maps f,g : Cj — C}, define an exact (n + 1)-gon.

12



2.3 A, -categories and Exact Polygons

We can frame the triangle detection lemma in a more conceptual way using the language of A, categories.
For i € Z/3Z, suppose that X; are objects in a strictly unital A, -category A, and suppose we are given
morphisms «; : X; — X;11, whose compositions satisfy the following conditions:

p(ei) = 0
po(aiyr,05) = 0
p3(iyo, aipr,05) = 1

Then for any strictly unital A, functor F : A — Ch, we obtain complexes C; = F(X;) and morphisms
between these complexes, as in the triangle detection lemma:

fi = FHw)
9 = Fais1, o)
hi = Faiy2,ip1, ).

The identities stated in the triangle detection follow precisely from the identities required for F to be an
A functor (given our assumptions on compositions of the maps «;):

Z FP a1,y prg(@it1y s Qig)y - Q)
p+q—1=k
= Z MT(FI(OQ,...,Ozil),...,flr<04k,ir+1,...,ak))
i1+ tip=k
Note that we only need these identities for £ < 3. In general, we will want to consider only the implications
of A -relations involving compositions of low order. To formalize this, we make the following definition.

Definition 2.12. An A, -category is a collection of objects and morphisms, with composition maps i, for
all k < n, satisfying all of the Ay, -relations which involve only these maps. We similarly define the notion
of an A,, functor between A,, categories, by imposing only the relations which involve multiplications of
order less than n.

Denote by P, the strictly unital A,, category which is generated freely by a cycle of morphisms
a; @ X; = Xit1, with i € Z/nZ, modulo the relations

0 k<n
Mk(ai,---,awk—l): 1 k=n

Note that this includes the relation do; = 1 (o) = 0. An exact n-gon induces an A,, functor F : P, —
Ch.

More generally, we can define an exact n-gon in an A, category A to be an A,, functor from P, to
A. For example, any n-periodic exact sequence in an abelian category determines an exact n-gon in the
associated derived category. In general, if F : P, — A is an exact n-gon in A and ' : A — A’ is an
A -functor, then we can form the composition F’ o F, which defines an exact n-gon in A’. Given an
object y of an A, -category A, we can form the Yoneda functor Hom/(Y, -) which is an A, -functor from
A to Ch. Thus we can use this Yoneda functor to construct an exact n-gon of chain complexes from an
exact n-gon in an A.

13



3 Topology of the Surgery Polygon

The main goal of this section is the definition of a family of cobordisms which play an important role in
the proof of Theorem 1.6.

3.1 Dehn Surgeries and Cobordisms

Let Y be an oriented 3-manifold with torus boundary. Let A and u be oriented simple closed curves on
the boundary, satisfying A - 4 = 1. Given any pair of coprime integers (p, ¢), we can consider the Dehn
filling of slope p/q,

Y}’/q = y Ufzo/q H’

where H = D? x S!is a standard genus 1 handlebody and Ipjq : 0H — 0) is any diffeomorphism such
that f,,,(0D? x {point}) is homologous to 41, 4 = ppt + gA. The loop {0} x S* inside H induces a knot
in Y}/, which will be denoted by K, ;.

Given two Dehn fillings Y),/, and Y, /; such that ps — gr = 1, there is a natural cobordism
/q
222 Yy = Yo G.1)

To construct it, we first glue the manifolds [—2, —1] x H and [1,2] x H to [—2,2] x Y using diffeomor-
phisms id x f,,, andid x f,. /. The result of this gluing is a 4-manifold with three boundary components.
By construction, the first two components are diffeomorphic to —Y),/, and Y./, and the third component
is a manifold L, obtained by Dehn fillings of slope p/q and /s on the two ends of [—1, 1] x T2. Because
the filling curves satisfy pi, 4 - ptr,s = ps — qr = 1, L is diffeomorphic to .S 3. Attaching B*, we obtain the
desired cobordism Z” //g

The same construction can be also applied if ps —gr # 1, but in this case L is no longer diffeomorphic
to a sphere (hence cannot be filled with B*). Instead of a simple cobordism from Y,/q to Y, /s, we have

a 4-manifold with three boundary components —Y},/,, Y./, and a 3-manifold Mf //sq To describe the
diffeomorphism type of M f //g explicitly, choose a curve A, 5 such that A\, ; - 11, s = 1, and define integers

a = firs - flpgand b = . g -y, 4. When a # 0, the 3-manifold M f //sq is diffeomorphic to the lens space

L(a,b), and when a = 0, it is diffeomorphic to S? x S.

Motivated by the definition of Zf //g we introduce the notion of cobordisms with middle ends. We say

W is a cobordism from a 3-manifold Y to Y’ with middle end L if:
oW =-YuY ulL.

We use the notation W : ¥ 2 Y to specify the ends of W. Therefore, Zf //g is a cobordism from Y, , to

Y, /s with the middle end M” //Sq If we have the cobordisms:

WYLY/ W/'YIL/)Y”
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LulL’
_—

then we can compose these cobordisms to obtain W#W' : Y Y’

Our surgery exact polygon involves only the integer surgeries Yy, . . ., Y, and the following infinite
periodic sequence of cobordisms between them:

Mg My M; Myt Mg My
Yo Y e Yy Yo

where the arrow starting from Y is given by the cobordism Zg +12. Note that the middle boundary

components of most of the cobordisms Z; 41 are diffeomorphic to S3 - the only nontrivial boundary
component is L(N, 1), which occurs in the cobordism ZJ'. It will be useful for us to consider the
composition of all these cobordisms in this sequence. The resulting space, denoted by 20, has an
alternative construction which will be easier for us to use later on.

Let D? be a Euclidean disk of some fixed large radius (larger than N + 2 will do), and let:

1
B::Rxpﬂmgzg+§ﬁﬂjez} (3.2)
Inside B we consider the arcs 9; = (j — 3,7 + 3) x {0}. We orient these arcs using their increasing
parametrization. For any j € Z, we define j € {0,..., N} to be the integer obtained by reducing j mod
N + 1. Form a divisor 0 as follows:

0:i=—>170; (3.3)
j

Recall that a co-oriented codimension 2 submanifold ® in a Riemannian manifold A can be used to
construct a complex line bundle £(®) over M. This can be done in a standard way, by choosing a tubular
neighborhood n(®), pulling back the normal bundle v (D) to n(®), trivializing the pull back of (D)
on n(D)\D in the tautological way, and gluing the pull-back bundle on n(®) to the trivial line bundle
on M\® using this trivialization. More generally, given a divisor ® = ZZ m;®;, where each ©; is a
manifold as above, we can define £(D) = X), L(D;)™. Applying this general construction to the divisor
0, we obtain a complex line bundle £ over B. Let X be the U(1)-bundle associated to L.

The 4-manifold 20 is constructed by gluing X to R x ). The line bundle £(0) admits a smooth section
s, which vanishes along each 9; (with multiplicity j), and is nonzero everywhere else. Normalizing s, we
obtain a trivialization 5 of X on B\d. We can use this trivialization to identify X|,; with —S* x 0B =
—u x A x R where the “base” circle is denoted by A, and the “fiber” circle is denoted by w. This gives
us an orientation reversing identification of X|,5 with 0(R x Y) = 1 x A x R.. Gluing the boundaries
of X and R x ), using this identification, gives rise to the manifold 2. Observe that 2J comes with a
canonical (smooth) map f : 20 — R, obtained by gluing the canonical projections of X and R x ) onto
R. The 4-manifold 20 also comes with a diffeomorphism 7" : 20 — 20 which translates by N + 1 in the
R direction. The fibers of X over the interval 9; determines a cylinder in 20. We will write X, for these
2-dimensional submanifolds of 2.

Proposition 3.4. Forany j € {0,..., N}, the pair (f~(j), f1(4) N ¥;) is diffeomorphic to (Y}, K).

2Here we use the cyclic notation, and when 5 = N, 5 + 1 denotes O.
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The 3-manifolds f~1(j) are called the vertical cuts of 2. We can use the diffeomorphism 7" to
identify f~1(4) and f~1(k) when j = k. Therefore, this proposition determines the topology of all
3-manifolds f~1(j).

Proof. First observe that f~1(j) n X is a handlebody H = D? x S!, viewed as a circle bundle over D?.
In this case the trivialization s is given (away from 0) by:

It follows that when we glue 0 H to 0), we identify \ with the curve (¢i?, e717%) and we identify ; with
the curve (1,¢'). Therefore, the curve A + jyu is identified with (ei?, 1), which bounds a disk in H.
Hence, by definition, f~1(j) is diffeomorphic to Y;. It is also clear that f~1(j) N X, is mapped to K
with respect to this diffeomorphism. O

We now define a second family of separating submanifolds in 20, which are called spherical cuts.
For every pair of integers (j, k) satisfying 0 < k — j < 2NN + 2, there exists a sphere Si c B, which
is centered at (%, 0), the midpoint of x; and x_1, and its radius is equal to 7 ;, = k*{l +v(k —j)

with v : Rsg — (0, %) being a fixed, strictly increasing function. In particular, if j; < jo < ko < kj and

(J1, k1) # (ja, k2), then Sﬁ does not intersect Sﬁ The sphere Si is one of the boundary components
of the complement of the ball in B which is centered at (#, 0) and has radius r; ;. Thus, we can use
the orientation of B to define an orientation on Si. The spherical cut corresponding to Si is given by
M ,Z, = X| Si° It is a circle bundle over Si of degree

&, = —i(0;-5]) =k — 7.
i
In the special case k = j + 1, this simplifies to

1

dj+1_7+1_]_{ -N j=

N
N
It follows that the manifolds M jj 41 are either spheres or diffeomorphic to L(V, 1).

Let WJ] 41 denote the submanifold of 2 bounded by Y};,Y; 1, and M jj 1

phic to Zj +1'in (3.1) before filling gluing the 4-ball. More generally, for j < k, we define the compact

This manifold is diffeomor-

manifold W,ﬂ to be the composite cobordism:

wl =w!

j+1 k—1
TOHEWILH# L HWET

The interior of this manifold is diffeomorphic to f~1((j, k)). The middle end of W,g is a union of lens
spaces. Note that this manifold, in general, is different from Z;.

For each 0 < I < N, let By(l) denote the submanifold of B bounded by the spheres Sll 1 Sllig,

ce Slljrr]]\\,[ 41 and S!. N1 Then the fibers of the U(1)-bundle X over By(I) determine a 4-manifold,
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Figure 1: This schematic figure sketches Xg(4): the small circles represent the 3-manifolds M jj 41 for
4 < j < 13. In particular, the white circle represents the lens space L(9, 1). The outer ellipse sketches
S1 x S2. The (co)homology classes es, eg and ¢ are also sketched in this figure.

denoted by X (1), with boundary components MllH, Mllj:%, cees MZZLJVVH and MllJrNﬂ. (See Figure 1
for an example.) The non-trivial boundary components of Xy (1) are S! x S? and L(N, 1). Clearly, the

manifolds X v ({), for different choices of [, are diffeomorphic to each other. In order to give an alternative
description of X (1), let o1 be the exceptional sphere in CP’and o v be the connected sum of N copies

of 0 in the connected sum of N copies of CP’. We also fix a closed loop v and NN points in # N@2
such that these submanifolds and o are disjoint form each other. Then removing a regular neighborhood
of the N points, v and oy gives rise to a 4-manifold which is diffeomorphic to X ({).

For 1 < i < N — [, fix a properly embedded path in By () which connects a point in the boundary
of Slljff_l to a point in the boundary of S¥ +1- Then the fibers of Xy (I) over this path gives rise to a
cylinder, denoted by ¢;. One boundary component of e; belongs to the lens space L(N, 1) < 0Xy(l), and
we orient e; such that the induced orientation on this boundary component matches with the orientations
of the fibers of the U(1)-bundle X. Similarly, we can define a cylinder ¢;, for N — [ + 1 < i < N, by
fixing a path from the boundary of Slljf 41 to S]]\\,] +1- Since the restrictions of relative homology classes
determined by e; to the boundary are torsion, the intersection number of e; and e; is a well-defined rational
number. These intersection numbers are computed in Lemma 3.5. By Poincaré duality, the cylinders e;
also determine cohomology classes on X (1), which will be also denoted by the same notation. Similarly,
pick a path from a point in the boundary of Sll +N41 to apoint in the boundary of S ﬁ +1- and let ¢ be the
cylinder given by the restriction of the U(1)-bundle to this path. The cylinder ¢ has a boundary component
in L(N,1). We orient ¢ such that the induced orientation on this boundary component of ¢ disagrees with
the orientation of the fibers of the U(1)-bundle X. Note that restriction of the homology class of ¢ to the
boundary of X (1) is not torsion. The cohomology classes determined by ey, ..., ex and ¢ give a set of
generators for H2(X (1), 7). A generator for the relations among these cohomology classes is given in

Lemma 3.5.

Lemma 3.5. The manifold X (1) is simply connected. The intersection of the classes e; and e; is equal
to % — 0;,5. Moreover, the homology class ey + - - - + ey is trivial.
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Proof. As it is explained above, X (/) can be regarded as a submanifold of # N@? The cohomology

=2 .
classes e, . .., ex can be extended to the set of standard generators of H?(# yCP”; Z). The claims of
this lemma can be easily seen from this description of eq, .. ., ex. O

3.2 Cycles in the Surgery Polygon

While working with U(N)-instanton Floer homology, in addition to a closed 3-manifold Y, we need to fix
a U(NV)-bundle on Y. A U(N)-bundle on Y is determined up to an isomorphism by the cohomology class
of its first Chern class. We specify this cohomology class by a 1-cycle which represents the Poincaré dual
of the first Chern class. A 1-cycle v in Y is a linear combination of oriented submanifolds of dimension 1
with integer coefficients. As it is explained in the previous subsection, we can associate a line bundle L to
any 1-cycle v. Then L @ CV~! is the U(IN)-bundle determined by .

A 2-cycle cin a 4-manifold W is a linear combination of oriented submanifolds of dimension 2 with
integer coefficients. In the case that W has boundary, we assume that each connected component of c is
properly embedded in V. Similar to the 3-dimensional class, ¢ determines a U(/N)-bundle on W for any
value of N. Suppose (Y,7), (Y',+') and (L, 1) are pairs of a 3-manifold and a 1-cycle. We say (W, ¢) is
a cobordism from (Y, ) to (Y’,~') with the middle end (L, ) if W is a cobordism from Y to Y’ with the
middle end L, and c is a 2-cycle in W such that:

oc=— uyul.

Then the boundary restriction of the U(/NV)-bundle associated to ¢ is canonically isomorphic to the
U(NN)-bundles associated to v, 4" and I. The advantage of cycles to cohomology classes for representing
U(N)-bundles is that a cycle determines a U(/V)-bundle up to a canonical isomorphism. This allows us
to compose cobordisms of pairs without any ambiguity.

We introduce a family of pairs of manifolds and cycles which are related to surgery polygons. Let )
be the 3-manifold with torus boundary from the previous subsection. Let also w < ) be a 1-cycle that is
away from the boundary of ). Suppose S is a subset of [ V] with j elements. Recall that S represents a
vertex of the graph G'y. To S, we associate a pair of a 3-manifold and a 1-cycle. The 3-manifold depends
only on j and is given by Y. The 1-cycle vs < Y is given by w L 05 - K, where og denotes the sum
of the elements of S. Next, suppose that i € [IN] does not belong to the set S. Then we have the edge
morphism fg; : S — S’ where S’ := S L {i}. We associate a cobordism of pairs as below to g ;:

: (M]J'Jrl’lS,i)

(W]J_Fl) CS,i) : (}/]7 f}/S)

(Yj+17 ’YS/)'

Half of the cylinder XJ; (respectively, X;1) belongs to Wj +1 and it intersect Y; (respectively, Y1) in
the knot K; (respectively, K1) by Proposition 3.4. We define cg; as:

i+ 1] xwuos- (E;n WJJH) Log - (B4 0 Wjﬂ) (3.6)

The cycle g ; in M ]J *1 s a union of the fibers of the Hopf fibration. Since M jj lisa sphere, the homology
class of this cycle is trivial. There is also a cobordism of pairs associated to the edge ¢ of G as follows:

(MY 1,15)
(WIZVV+1’C5) : (Yn,,Y[N]) e

(YO”VQ)
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The cycle c¢; is again given by (3.6) where S = [N], S’ = & and j = N. The cycle [s in the lens space
M ]]VV +1 is also a union of the fibers of its U(1)-fibration. The homology class of this cycle is equal to

N(N-1)
2

times a generator of Hy (MY, |;Z).

4 Geometry of the Surgery Polygon

The main goal of this section is to construct families of metrics on the 4-manifolds which are constructed
in the previous section.

4.1 Families of Cylindrical Metrics

Suppose W is a compact smooth 4-dimensional manifold. Let W be the result of gluing [—1,0) x dW
to W by identifying {—1} x 0W with the boundary of W. We call each connected component of
(—1,0) x OW < W an end of W™. We also fix a metric / on each connected component Y of oW
Then h determines the metric:

1
—5dr + h(y) .1

on the end (—1,0) x Y, which is called the cylindrical metric associated to h. If we define the coordinate
t = —In(|r|) on this end, then (4.1) has the form dt> + h, which justifies the terminology of cylindrical
metrics. A metric g on W is cylindrical if its restrictions to the ends of W™ have the form (4.1).

A metric g on W is asymptotically cylindrical if for each connected component Y of 0W there is a
quadratic form A’ on (—1,0) x Y such that:

1
g= ﬁalr2 + h(y) + ' (r,y). 4.2)

Here h is the metric associated to Y and i’ satisfies the following decay condition. There is a positive
constant § and for each integer k, there is a constant C, such that:

VR ()l < Cylrl®

Here the covariant derivative V¥ and the point-wise norm | - | are defined with respect to the metric g.
Under this decay assumption, we say g is asymptotic to h on the cylindrical end associated to Y.

A family of smooth cylindrical metrics on a 4-manifold W parametrized by a smooth manifold K
consists of a cylindrical metric g(x) on W for each x € K such that g(x) depends smoothly on x and
the restriction of g(x) for each end (—1,0) x Y of W is given by (4.1). In particular, the restriction of
g(x) on the ends is independent of x. More generally, we can consider smooth families of asymptotically
cylindrical metrics by allowing the metrics in the family to have the form (4.2) on the ends. For our
purposes, it is important to work with even more general families of metrics that can degenerate in a
controlled way. In the present article, we limit ourselves to families of such metrics which are parametrized
by admissible polyhedra.
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An admissible polyhedron is a polyhedron K such that each face I of K with co-dimension [ has the
form of the product Ky x --- x K; with each K; being an admissible polyhedron of lower dimension.
We reserve the notation F for the interior of the face F' which is by definition the set of points in F'
with a neighborhood diffeomorphic to an open ball in a Euclidean space. Therefore, F' is identified with
K§ x ... K where K7 is the interior of the polyhedron K. If F, is a face of K;, then F' = F); x - - x I
is also a face of K and the product structure on F is induced by the product structures of the faces F;.

An admissible polyhedron is also required to have a parametrized regular neighborhood for each face.
For any face F' = K x --- x Kj of a polyhedron K, a regular neighborhood Ur and a diffeomorphism
Ur:Up — F x (1,00] is fixed such that for p € F":

\I’F(p) = (p,OO,...?OO)
If F; is a face of K; with the parametrized regular neighborhood U Fls then the open neighborhood Ug» of
the face F' = Fll X - X F; is given by:
UFI = \I/;—,l(UF(/) X 0 X UFZI X (1,OO]Z)

and the map Vv is equal to the composition of Up : Upr — Upr X -+ x Upy % (1, 00]" and the map ¥E,
defined on UF(’] X oo X UF[ x (1, 00]" as follows:

\Ilgl - (\I/FOI, ey \I/Fl/, Id(l,oo]l)~

In the following, we use the maps W to regard F' x (0, 0]’ as open subsets of & . The main example of
admissible polyhedra for us is the associahedron whose definition is reviewed in the next subsection.

A family of cylindrical metrics on a compact 4-manifold W parametrized by an admissible polyhedron
K is a manifold W together with a projection map 7 : W — K such that each fiber of 7 is a smooth
4-manifold and a Riemannian metric on each fiber is fixed. The space W as a manifold has the following
form:

W=w"x K\ (U Y x F) (4.3)
F

and 7 is induced by the projection map from W' x K to K. Here Y, for each F, is a closed 3-
dimensional submanifold Yz of W*. We also assume that a collar neighborhood of Y7 is identified with
the set (—2,2) x Yp. The 3-manifolds Y7 and the metrics on the fibers of 7 are required to satisfy some
additional constraints.

If the face F has the form K x - - - x K}, then we require that Yz and W\ Yz have respectively [ and

I+ 1 connected components. We denote the connected components of Y with Y1, ..., Y;. The connected
components of W\(—1,1) x Yp are also denoted by Wy, ..., W;. Therefore, W+\Yp can be identified
with the disjoint union of the cylindrical 4-manifolds W, ..., I/Vf. Each connected component of Yr

is called a cut of W and is equipped with a metric. Let f; be a face of K; with codimension /; and
F = FE) X - X F; be the corresponding face of K. For each 14, there is a closed 3-manifold Y < W;r
with /; connected components such that Yir = Y 1 Ypé - YF[‘ The metrics on the cuts,l that Yp
and Yz have in common, are required to be equal to each other.
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For the open face F, the space 7~ !(F) can be identified with (W, - u W) x K§ x -+ x K}.
For each 1 < ¢ < [ and each x; € K, there is a metric g(x;) on W;r varying smoothly with respect to
x; such that the metric on the fiber of W over the point (xo, . ..,x;) € F is given by (g(x0), ..., 9(x1)).
The restriction of the metric g(x;) to the cylindrical ends of W;r needs to be given as in (4.1) where h is
determined by the metrics on the boundary components of W and the cuts. In particular, the restriction of
g(x;) to the cylindrical ends is independent of x;.

The metrics on the fibers of W over F' determines a family of metrics on the fibers of W over the
regular neighborhood F x (1, 0]’ of F'. To define this family, fix a 1-parameter family of smooth functions
us : [—1,1] — R>? for s € [1, 00) such that:

(1) us depends smoothly on s;
(i) us(—r) = us(r);

(i) us(r) = ﬁ forte[-1,-2] U [3,1];

(iv) Sl_l us(r)dt = s;

(v) The functions us on compact subsets of [—1,0) U (0, 1] converges uniformly in all derivatives to
the function uq, (1) = ITLI’ as s — o0.

Now, let p = (Xo,...,X,51,...,5) be an element of F' x (0,0]!. If s; € (0,0), then the regular
neighborhood (—1,1) x Y; is a subset of the 4-manifold 7! (p). We call this neighborhood the neck
associated to Y;. On this neighborhood, we fix the metric us; (r)2dr2 + h; where h; is the metric on Y;.
We can also consider the cylindrical coordinate ¢:

T
t(r) := L us, (p)dp 4.4)
Note that t € (—%, %) for r € (—1,1). Then the chosen metric on (—1,1) x ¥; has the form dt? + h;.
If s; = oo, then ((—1,0) U (0,1)) x Y; is a subset of 7~!(p) and we fix the metric ;dr* + h; on
this 4-manifold. These metrics can be extended by g(xo), - . ., g(x;) to a metric on 7 1(p). As a final
requirement on the family of metrics W, we demand that the metrics on the fibers of W over the regular
neighborhood F x (1,0]" agrees with the above family of metrics.

More generally, we can consider families of asymptotically cylindrical metrics. Similar to the
cylindrical case, a family of asymptotically cylindrical metrics on W parametrized by an admissible
polyhedron K consists of a manifold W as in (4.3), a projection map 7 and a metric on each fiber of the
map 7. Let F' = K§ x --- x K} be an open face as above such that WH\Yp = W™ 0 - L I/Vl+. For
each x; € K, there is an asymptotically cylindrical metric g(x;) on W;* such that g(x;) on each end of
W.* is asymptotic to the metric which is fixed on the corresponding boundary component of W;. The
metric g(x;) is also required to vary smoothly with respect to x; € K. The metric on the fiber of W over

the point (xo, . ..,x;) is given by (g(xo), - .., g(x7)).

The above metrics on F' can be used to construct a family of metrics on the fibers of W over F'x (0, oo]".
To define the metric associated to p = (Xq, ..., X, 51,...,5) € F x (0,00]', we firstly focus on the
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neck associated to the connected component Y; of Y. Suppose W0+ (respectively, W) is the connected
component of W1\Yz that has Y; (respectively, —Y;) as a connected component of its boundary. If

€ (1, 00), then the regular neighborhood (—1,1) x Y; is a subset of 7! (p). The restrictions of the
metrics g(xg) and g(x) to the ends associated to Y; have the following form:

1 1
g(xp) : ﬁdTQ + hi(y) + b (r,y) g(x1) : T—er2 + hi(y) + A" (r,y).

for appropriate choices of quadratic forms 2’ and h”. We can use these metrics to define the following
metric on (—1,1) x Y; for the parameter s;:

t+s; s t+s; %
dt? + hi(y) + p1(— ) (=72 7 y) + a5 R (e 2 y) (4.5)
2s; 2s;
where t € (=%, %) is defined in (4.4) and @1, o are given in (1.12). In the case that s; = o0, then
((—=1,0) U (0,1)) x Y; is a subset of 7~ *(p) and we fix the following metric on this space:

{ fdr® + hi(y) + 1 (ry) - re(-1,0) “6)

r%dTQ + hi(y) + W' (=r,y) re(0,1)

The metrics in (4.5) and (4.6) are equal to g(xq) (respectively, g(x¢)) in a neighborhood of {—1} x Y;
(respectively, {1} x Y;). Therefore, we can extend these metrics on the necks to a metric § on 7~ (p)
using g(xo), - .., g(x;). For a family of asymptotically cylindrical metrics the metrics ¢ and g are required

to have similar asymptotic behavior on F' x (0, o0]'.

To state the precise version of the property about asymptotic behavior of g and g, suppose A is
the function on 7~ !(p) which is equal to —In(|r|) on an end (—1,0) x Y where Y is a connected
component of 0W, is equal to 3 — [t| on the neck (—1,1) x Y; where ¢ is defined as in (4.4), and is
equal to 0 on the remaining part of 7=1(p). Then for a family of asymptotically cylindrical metrics
there is a positive constant §, and for any integer k, there is a constant Cj, such that for F' and for
(X0, .-+ ,X1,81,---,8) € F x (1,0]" the following inequality holds

[V*(g = )| < Cre 27,

Here 7 is equal to the minimum of the parameters sy, ..., 5.

4.2 Associahedron

In this subsection, we review the definition of a family of polytopes which are known as associahedra.
The families of metrics that we use in this paper are all parametrized by associahedra. These polytopes,
discovered by Stasheff [Sta63], also play an important role in the definition of the A, -structure of Fukaya
categories in symplectic geometry [FOOO09a, FOOOO09b]. In the first part of this subsection, we review
the definition of a few combinatorial notions necessary for the definition of an associahedron. Then we
define associahedra as the moduli spaces of points in the 3-dimensional Euclidean space.
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Ribbon Trees

Definition 4.7. Let I" be a graph with vertex set V(I') and edge set E(I'). A ribbon structure on T’
consists of a choice, for every vertex v € V(I'), of a cyclic ordering of the set of all edges incident to v.

Example 4.8. Any planar graph has a preferred ribbon structure, in which edges incident to a common
vertex are ordered in the counterclockwise sense.

Definition 4.9. A graph T is a tree, if it is contractible. We say T is marked, if one of the vertices of
degree 1 is marked as the root of T'. If T" has no vertices of degree 2, we say it is reduced. In a reduced
tree, any edge incident to a vertex with degree 1 is called a leaf, and any other edge is called an interior
edge. An edge of T is called a non-root leaf, if it is a leaf which is not incident to the root. An n-ribbon
tree is a reduced and marked ribbon tree with n + 1 leaves.

Let T' be an n-ribbon tree. We shall need the following notation about 7':

(1) The set of vertices with degree at least 3 are called the interior vertices of T" and are denoted by
VInt(T), If v € VI (T'), then the integer number d(v) is defined such that the degree of v is equal
to d(v) + 1.

(ii) For e € E(T), let the endpoints of e be labeled with s(e) and t(e) such that the unique path from
s(e) to the root does not contain the edge e. Then the unique path from ¢(e) to the root starts with
the edge e. The vertices s(e) and t(e) are respectively called the source and the rarget of e. We
say e is an outgoing edge of s(e) and the incoming edge of t(e). The set of all interior edges are
denoted by E™(T). Note that | E™(T)| = |V™"(T)| — 1.

(iii) Since each vertex v has a unique incoming edge, the ribbon structure on v is equivalent to an
ordering of the outgoing edges. Therefore, we sometimes confuse the two types of ordering.

Example 4.10. Two (6)-ribbon trees are given in Figures 2 and 3. The roots of these two trees are labeled
with [y and the remaining leaves are denoted by [y, lo, ..., lg. The planar description of these graphs
determine their ribbon strcutures. The tree in Figure 2 has three interior vertices vy, v1, vo and two interior
edges eq, ea. The sources of e; and es are both equal to vg. The targets of e; and eo are repectively equal
to v, and vo. The ribbon tree in Figure 3 has only two interior vertices ¥ and vy. The only interior edge of
this graph has ¥ as its source and vy as its target.

Definition 4.11. Let e be an interior edge in an n-ribbon tree 7" joining vertices s(e) to ¢(e). One can
collapse the graph, by removing e and identifying s(e) with ¢(e). We say that 7", the resulting graph, is
obtained by shrinking the edge e of T. The tree T" inherits a ribbon structure of its own, by merging the
cyclic orderings at v and w. To be a bit more detargeted, the set V' (7”) is the union of V (T')\{s(e), t(e)}
and a new vertex v. The labeling of the outgoing edges of any vertex in V(T')\{s(e), t(e)} = V(T") is
inherited from the ordering of the outgoing edges of the corresponding vertex of 7. Suppose e is labeled
as the k' outgoing edge of s(e). Then the set of the outgoing edges of ¥, as an ordered set, is given as
below:

€1,y €k—15 f1, f2, - -+ fae(e))s k415 - - - 5 €d(s(e))

23



lo o

524

Vo
€2

el U2
U1 %)

h la Iz lyls lg h la I3 4l lg

Figure 3: A (6)-ribbon tree obtained from shrinking

Figure 2: A (6)-ribbon tree edge ¢ in Figure 2

where:
€1, €2, - -, €4(s(e)) Js foy oo Fage))
are respectively the ordered set of the outgoing edges of s(e) and ¢(e). Therefore, T” is also an n-ribbon
tree and: ‘ '
VT = V(T - 1.
In general, if a series of edge shrinking in an n-ribbon tree 1" gives rise to the graph S, then we write
T < S Wealsowrite T' < SifT'<SorT = 5.

Example 4.12. The (6)-ribbon tree in Figure 3 is obtained by shrinking the edge e; in the (6)-ribbon tree
of Figure 2.

Next, we introduce a different method to encode the information of a ribbon tree.

Definition 4.13. A subset A of [n] is called a cyclic bisection if it has the following form:
A={i,i+1,...,7}

with j — ¢ > 1. More generally, we can define a cyclic bisection of an ordered set S = {l,...,[,} by
identifying S with [n] in an order-preserving way. Two cyclic bisections Ay and A; of S are crossed if
Ap n Aj is non-empty and none of Ag and A; contain the other set. Otherwise, we say the two cyclic
bisections are uncrossed.

Example 4.14. Figure 4 demonstrates various cyclic bi-sections of the set S = {l1,...,lg}. In this
figure, we put the elements of S U {lp} on a circle such that the order of the set is given by removing [
and moving on the punctured circle in the counter-clockwise direction. Any line segment in Figure 4
divides the set {lo, 1, ..., ls} into two sets, and the subset which does not contain [y is the corresponding
cyclic bisection. The bisections Ay = {l2, 3,14} and Ay = {l1, [} are crossed. However, each of these
bisections and A; = {5, [} are uncrossed. The presentation of cyclic bisections as in Figure 4 justifies
our terminology.
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lo

Figure 4: Three cyclic bi-sections of a set of 7 elements with a cyclic ordering

The set of non-root leaves of a ribbon tree 7' admits a natural ordering. To obtain this ordering we
shrink all the interior edges of T'. The ribbon structure on the final graph determines the ordering among
the non-root leaves of T'. Therefore, we can talk about cyclic bisections of the non-root leaves of 7. Let e
be an interior edge of 7. Removing e divides the set of leaves into two sets with at least two elements.
The set that does not contain the root determines a cyclic bisection of the set of non-root leaves. Given
two interior edges of T', the corresponding cyclic bisections of the leaves are uncrossed. Therefore, an
n-ribbon tree T" with k interior edges gives rise to k distinct cyclic bisections of the leaves of 7", which are
mutually uncrossed. For example, the cyclic bisections associated to the edges eg and e; of the n-ribbon
tree in Figure 2 are respectively equal to Ag and A1 given in Figure 4. The following lemma asserts that
an n-ribbon tree is determined uniquely by the set of its cyclic bisections:

Lemma 4.15. Suppose S is an ordered set. Suppose also k mutually uncrossed cyclic bisections
{Ai}1<i<k of S are given. Then there is a unique n-ribbon tree T with k interior edges such that
the set of non-root leaves of T' is S and the cyclic bisections associated to its interior edges are equal to

{Ai}léigk-

Proof. This claim can be proved by induction on k. By changing the indices if necessary, we can assume
that A; is minimal among the sets {A;}1<;<k. Thus A;, for any ¢ > 2, either contains A; as a proper
subset or it is disjoint from A;. By collapsing the elements of A; into one element v, define a new set
S’ out of S. The set S’ inherits an order from S. For any ¢ > 2, if A; contains A;, define A} to be the
following subset of S’

Al = AN\NA; U {T}

Otherwise, A/ is defined to be A;. The sets { A} }><;<) form mutually uncrossed cyclic bisections of the
set S”. Therefore, the induction hypothesis can be used to construct a tree 7" with k — 1 interior edges
whose induced cyclic bisections are give by { A’ }2<;<x. Thus we can construct 7" by adding the elements
of A; to the set of vertices of 7" and connecting the vertex ¥ to the elements of A;. The ribbon structure
on 7" and the ordering on the set A; induce a ribbon structure on 7. It is clear that the set of non-root
leaves of T is equal to S and the cyclic bisections associated to 7" are given by { A; }1<;<k. Moreover, it is
easy to check that T is the unique tree with these properties. O
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Compactifications of Arrangements of Points

Letx = {z1,%2,...,2,} be a subset of R = R x {(0,0)} = R? that contains n distinct points. We
assume
T <Tg < -+ < Iy 4.16)

where “<” is defined with respect to the natural order of the real line. We say a set of balls © as below:
By, (z1)  By,(x2) e B, (z,)  Br(x)
defines a set of territory balls, if for 1 < ¢ # j < n:
r; ¢ Bar; (7)) B () © Br(7) 4.17)

We call By, (z;) the territory ball of the point z;. The ball Br(%) is called the parent territory ball.
Note that (4.17) implies that the distance of a point z in B, (x;) from any other point in the same
ball is less than the distance of z from a point in the ball B,,(z;) with i # j. In particular, the balls
By, (x1), By, (x2),- -+ , By, (zy,) are disjoint.

We say two arrangements of points xg and x; are affinely equivalent to each other if there is an
affine linear transformation that maps xg to x;. The space of all arrangements of points as above
modulo this equivalence relation forms a space P,,. Two sets of territory balls ® and ® for affinely
equivalent arrangements x( and x; are equivalent to each other if ®( is mapped to ©; by the affine linear
transformation which maps xq to x;. The space of all territory balls modulo this relation defines a fiber
bundle D,, over P,, with contractible fibers. For each n, we fix a smooth section of the fiber bundle D,,.
Later in this section, we require that these sections satisfy some constraints.

The space P, is diffeomorphic to an open ball of dimension n — 2 and we shall review two different
compactifications of this space. We can compactifiy the space P,, by allowing some, but not all, of the
inequalities in (4.16) to be equalities. The resulting compact space is a simplex of dimension n — 2. We
say this compactification of P, is the weak compactification of P,,. Alternatively, there is a more refined
compactification of this moduli space which is called associahedron and is denoted by K, [Sta63]. We
also call /C,, the strong compactification of P,,.

Given an n-leafed tree 7', define Fr to be the following space:

Fri= [] Paw (4.18)
peVInt (T)

Then the associahedron /C,,, as a set, is defined to be the following disjoint union:

K, o= |_|FT (4.19)
T

where the union is over all n-ribbon trees. For each n-ribbon tree 7', we define a map &7 : N(Fr) — K,
where N (Fr) is given as below:

N(Fr) := Fr x (Mg, 0] E™@,
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Here M)y is a constant greater than 1. For the definition of $7 we can assume that My = 1. But as we
move forward throughout the paper, we need to increase the value of this constant.

Let T" have [ + 1 interior vertices and label interior vertices and the interior edges of 1" respectively
with vg, v1, - -+, vy and e, - - -, €;. Consider an element (xg, . ..,X;, 81,...,5;) € N(Fr). In the case
that all parameters s; are equal to co, define @7 as follows:

@T(Xo,...,xl,OO,...,OO) = (XQ,...,XZ)EFTC’Cn.

Otherwise, choose a finite s; with the smallest index 7. Without loss of generality, we assume that this
parameter is s1, s(e1) = vg and t(e1) = v1. Suppose 1" is obtained from 7" by shrinking the edge e;. Let
also ¥ denote the new vertex of 7”. We shall define X as an element of Pa()- Then the map @7 is defined
inductively by the following property:

(I)T(X(),Xl,XQ, ey X1y S81y 000y Sl) = q)Tl(}NC,Xg,, ey X153 825 000, Sl)

Let also x (respectively, x;) be represented by the arrangement of points {z1, ..., x4} (respectively,
{!,...,2/,}) where d = d(vp) and d’ = d(v1). The sections of the bundles Dy and Dy determine
territory balls:

By, (ml) By, (xQ) T BTd(md) BR(i')
and:
By (1)  By(xy) -+ By (vg) Br()

We can make a correspondence between the set of outgoing edges of vy and the set of points x; using the
ordering of these two sets. Suppose that the point x; is matched with the edge e;. There is a unique affine
transformation which maps the ball B/(2') to B, (z;). Use this transformation to replace the point
x; with the image of the points z7, . .., z/,. This arrangement of points defines X € Py, 44,1 Which is
independent of the choices of the representatives for xg and x;.

Example 4.20. Let T and T” denote the (6)-ribbon trees of Figures 2 and 3. Figures 5 and 6 represent
points in Fp and Frv. The arrangement X is obtained by merging x; and x5. Choices of territory balls
for these arrangements are also illustrated in Figures 5 and 6. Intersections of territory balls with the
line R x {(0,0)} are demonstrated by two round brackets around each point. The intersections of parent
territory balls with the line R x {(0,0)} are also sketched by square brackets. In order to have a clearer
figure, (4.17) is not completely satisfied in Figures 5 and 6.

We equip C,, with the weakest topology such that the maps ®7 are all continuous. The space K,
with this topology is a compact Hausdorff space [FO97, FOOO092a, FOOO09b, Sei08]. In fact, k), admits
the structure of a smooth manifold with corners and is a polytope of dimension n — 2. For example, the
spaces K3 and K4 are respectively an interval and a pentagon. If M is large enough, then the maps &
are diffeomorphisms. Therefore, they define charts for /C,;. We assume this requirement on M holds for
n<2N + 1.

Remark 4.21. In [FO97, FOO0O09a, FOOO09b, Sei08], IC,, is regarded as the compactification of the
moduli space of 2-dimensional (conformal) discs with the choice of (n+ 1) marked points on the boundary.
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Figure 5: The arrangements of points Xg, X1, X2 give an element of F7 with T" being the (6)-ribbon tree
of Figure 2. Territory balls for these arrangements are also sketched in this figure.
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Figure 6: The arrangements of points X, X give an element of Fr» with 7" being the (6)-ribbon tree of
Figure 3. Territory balls for these arrangements are also sketched in this figure.

This moduli space can be identified with P, in the following way. Any conformal structure on the 2-
dimensional disc is conformally equivalent to the standard conformal structure on the upper half-plane
H < C. This conformal equivalence can be chosen such that one of the marked points is mapped to oo in
the boundary of H. Then the remaining marked points determine an arrangement of points on the real line
in C, which is well-defined up to an affine transformation. Let x = {x1,...,2,} be an element of P,,. A
territory ball B, () determines a half-disc D; in H with the center z; and radius r;. We can also define
a half-disc associated to Br(Z). The interior of the complement of this half-disc, denoted by D, can be
regraded as an open neighborhood of co. The discs Dy, ..., Dy, Dy define disjoint open neighborhoods
of the marked points. Such auxiliary structures are called strip-like ends in [SeiO8].

An unsatisfactory point in the definition of @ is its dependence on the labeling of the interior edges of
T'. This issue can be fixed by requiring that the sections of the bundles D,, satisfy a compatibility condition.
Suppose 7' is an n-ribbon tree with exactly one interior edge. Then any element of F7- consists of two
arrangements of points. Moreover, we can use the above gluing construction to define a (well-defined)
gluing map from @7 : Fp x (My, 0) — P,,. For any element (x1, X2, s) € Fr x (Mp, o), the territory
balls for x; and x5 induce a set of territory balls for the point &7 (x1, X2, s). That is to say, the sections
of the bundles D,,, for n’ < n, induce a section of the bundle D,, over the following open subset of P,,:

Uy = | JOr(Fr x (Mo, 0)) (4.22)
T

where the union is over all n-ribbon trees with one interior edge. A priori, this section might not be
well-defined because the spaces @7 (Fp x (M, 00)) overlap with each other.
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Definition 4.23. Suppose that sections of the fiber bundles D,, are fixed for n < ng. We say that these
sections of D,, are compatible with gluing, if for each n the section of D,, over U,, agrees with the one
induced by the sections of the bundles D,,; with n’ < n.

The following lemma is the analogue of Lemma 9.3 in [Sei08]. For the remaining part of this paper,
we assume that the claim of this lemma holds for ng = 2N + 1.

Lemma 4.24. For any ny, if My is large enough, then the sections of the bundles D,, with n < ng can be
chosen such that they are compatible with gluing.

Sketch of the proof. The sections of the bundle D,, can be constructed by induction. Suppose these
sections are constructed for n’ < n. The induction assumption shows that the induced section of D,, on
the open set U, is well-defined if M is large enough. Since the fibers of D,, are contractible, this section
can be extended to P,,. O

For an n-leafed tree T" with [ interior edges, the space F7 forms an open face of co-dimension /. From
the description of the topology, it is straightforward to see that the corresponding face, denoted by F'p, is
given by:

This also implies that F'7 is equal to Hvevlnt(T) Ka(v)- Therefore, each face of the associahedron Ky, is a
cartesian product of smaller associahedra.

Co-dimension one faces of the associahedra /C,, are labeled by n-ribbon trees with one interior edge.
Therefore, Lemma 4.15 implies that the set of co-dimension one faces are in correspondence with the
cyclic-bisections of the set [n]. Suppose A is a cyclic bi-section of [n]. We write T4 and F 4 for the
corresponding n-ribbon tree and the corresponding face of /C,,. We also define U4 to be the following
subspace of /C,,:

Ua:= | ®r(Pr x (Mo, o] " M),
T<Ta

The space U 4 is clearly an open neighborhood of F 4.

Let T" be an n-ribbon tree such that T < 7T'4. Suppose T has [ interior edges denoted by ey, .. ., €
such that the cyclic bisection associated to e1 is A. Let x = (g, ..., X}, 51,...,5) € Fr x (Mg, o]
and define:

wA(x) := ®p(xq,...,X],00,892,...,5)

By choosing M large enough, the point 74 (x) and the number [ 4(x) := s; depend only on x (and not
on 7). This allows us to identify U4 with F' 4 x (Mg, o0]. That is to say, Uy is a regular neighborhood of
the face F 4, as in Subsection 4.1.

More generally, we define Ur, for an n-ribbon tree 7" with [ interior edges, to be the following
neighborhood of F'7:

Up = ﬂ Ua
T<Ty
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Similar to Uy, Uz can be identified with F'r x (Mg, o0]'. Note that if T4 > T, then the projection 74
maps U to itself . If A’ is another cyclic bisection that T'4» > T, then compatibility of the sections of the
bundles D,, with respect to gluing implies that the maps 74 and 74, commute with each other. Define
nr : Ur — Fr to be the map given by composing all projection maps 74 such that T4 > T. Above
discussion shows that this map is independent of the order of composition of the projection maps 7 4. The
map 77 defines the first factor of the diffeomorphism from Ur to Fp x (M, oo]l. The component of this
diffeomorphism in (M, 0]' can be also defined similarly.

Proposition 4.25. For two cyclic bisections Ay and Ay, the open sets Uy, and U 4, intersect if and only
if Ay and Ay are uncrossed. More generally, suppose T and I are two n-ribbon trees. Then Ur, and
Ur, intersect if and only if there is an n-ribbon tree T' such that T' < T and T' < T5.

Proof. The second part of the proposition is a consequence of the first part. To prove the first part of
the proposition, let U4, and U 4, contain a point in their intersection. Since these sets are open, we can
assume that x € P,,. Therefore, x is in correspondence with the arrangement of n points {z1,...,2z,} on
the real line. The assumption (4.17) implies that:

|z; — x| < |x; — x| i, j € Ag, k¢ Ag

A similar claim holds if we replace Ay with A;. Consequently, either the sets Ag and A; are disjoint or
one of them contain the other one. That is to say, Ay and A; are uncrossed. Conversely, if Ay and A; are
uncrossed, then there is an n-ribbon tree 7" such that 7' < Ty, and T" < T'4,. This implies that U4, and
U4, both contain the space &7 (Fp x (My, o] E™ (D). O

There is a map from the strong compactification to the weak compactification of P,,, denoted by
5 : Ky — A,_9, which is equal to the identity map on the space P,,. Intuitively, the compactification
IC,, allows different points to merge. It also has the the additional information that records the rate of
convergence of different points to each other. The map §, called the forgetful map, forgets this additional
information. To give the definition of §, let 7" be an n-ribbon tree with root [y and the non-root leaves /;.
Suppose the root [y is connected to the interior vertex v of T'. Suppose also e1, ..., e4(,) are the edges
of T' whose sources are equal to v. We assume that the labeling of these edges is given by the ribbon
structure of the vertex v. We also define n; to be the number of leaves /; such that the unique path from
lj to lp contains the edge e;. Any p € Fr associates an arrangement {1, . .., T4(,)} of d(v) points to v.
Then §(p) is the arrangement of n points in which z; appears with multiplicity n;. It is straightforward to
check that the map § o @7 for any n-ribbon tree 7' is continuous. Therefore, the map § is continuous.

Annular Decomposition

Let T" be an n-ribbon tree with interior vertices vy, . . ., v; and interior edges ey, .. ., €;. Suppose x € Py,
belongs to the open subset Fr x (0,0)! of Up. Then x = ®7(xq, ..., X, 51,...,5;) for appropriate
choices of (x,...,x;) € Frand (s1,...,s;) € (Mo, 0)". For a given i, suppose {z1, ..., T4, } s a

representative for x;, By () is the territory ball around x;, and Bg() is the parent territory ball. Then
we can form the 3-dimensional annular regions:

By, (z;)\{z;) (4.26)
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around z; and the annular region R\ B(7) around infinity. These annular regions are in correspondence
to the edges of T'. Each interior edge e, of T" with source v; and target v;s is in correspondence with two
annular regions; one of these regions is a 3-dimensional annulus of the form (4.26) and the other one is an
annular region around infinity. On the other hand, each leaf of 7" is matched with exactly one annular
region.

In order to form the punctured Euclidean space R3\x, we glue together annular regions corresponding
to the interior edges>. Suppose ey, is an interior edge, connecting its source v; to its target v;;. Suppose
also the annular region associated to ey, in Rg\xi and R3\x; are respectively denoted by B,(z)\{z} and
R3\Bgr(7). Remove the ball of radius e~ 2 r from B, (z)\{z} to obtain A;. The space A; is an annulus
with inner radius e~ % 7 and outer radius r We also take the intersection of R3\ B (%) with the closure
of the ball centered atT and with radius e ¥ R to obtain Ay. Then As is also an annulus with inner radius
R and outer radius e 2 R. We glue A; along its inner sphere to A, along its outer sphere using an affine
transformation. We write A(ey,x,T") for the the union of the following subsets of A; and A after gluing:

A n Be_%lr(x> AQ\B@@R<E)

The space A(ex,x,T) is also an annular region where the ratio of its outer radius to the inner radius is
equal to e®*~ Mo We call A(ey,x,T) the neck of R®\x associated to the edge e;, of T. Applying the
above gluing construction to all interior edges gives rise to R?\x.

We can also associate subspaces of R3\x to each leaf and each interior vertex of 7. Suppose [ is a
leaf of T and A(l, x, T) is the subspace of R*\x induced by the annular region associated to . We call
A(l,x,T) the end of R3\x associated to the leaf [ of T. The complement of the necks and the ends of
R3\x is a union of [ + 1 compact connected spaces, one for each interior vertex. The fat region of R3\x
associated to the interior vertex v; of T is the connected component of this space corresponding to v;.
The fat region associated to the vertex v; can be also regarded as a subset of R3\x;. Decomposing R?\x
as the above disjoint union of necks, ends and fat regions is called the annular decomposition of R3\x
associated to the tree 7.

The definition of annular decomposition can be extended to the open neighborhood Fir x (0, 0] of
Fr. In this neighborhood the parameters s are allowed to be co. If s; = 00, then we leave the annular
regions associated to the interior edge ey, without change. Furthermore, A (e, x,T') is the disjoint union
of two sets of the following form:

B g (2)\{w} R3\BE@R@- (4.27)

According to Proposition 4.25, for any point p € K, there is a unique n-ribbon tree 71" such that 7" is
minimal with respect to the relation < and p € Fr x (0, 0]’. The annular decomposition of p (without
reference to any ribbon tree) is defined as the annular decomposition with respect to this minimal tree.

Suppose again 7' is a ribbon tree with interior vertices vy, . . ., v; and interior edges e1,. . ., €. Suppose
x € P, is equal to ®7(xq, ..., %, s1,...,5) where (Xg,...,x;) € Frand (s1,...,5) € (0,00)'. Let
Y05V R3\x — R be the functions determined by the properties (i), (ii) and (iii) below.

3For two different representatives of x, there is a unique affine transformation that identifies the corresponding punctured
Euclidean spaces. Therefore, R3\x is well-defined up to a canonical isomorphism. See also the definition of B in Subsection
44.
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(1) The function ~; is equal to 1 on the fat region associated to the interior vertex v; and vanishes on
the fat region associated to any other vertex.

(i1) If [ is a leaf incident to the vertex v;, then ~y; is equal to 1 on the end associated to the leaf [.

(iii) Suppose the neck A(ex,x,T') associated to the interior edge ey, is a 3-dimensional annulus with
inner radius r and the outer radius e”r. If v; is the target of ey, then ~y; at y € A(eg, x,T") is defined
as follows:

(%)

T

)

where the function ¢ is given in (1.12). If v; is the source of ey, then ; at y € A(eg,x,T) is
defined as follows:

Yi(y) = ¢a(

1n(u)

r

).

where the function (9 is given in (1.12). If v; is not incident to e, then ~y; vanishes on A(ex, x,T).

Yi(y) = o

The functions ¥, . . ., 7; can be used to glue a list of functions {f; : R3\x; — R}o<i<; and to form a
function f : R3\x — R. The function f is defined as below:

z
f= ki
=0

We say f is given by gluing fo, ..., f; along the ribbon tree T" with parameters (s1, ..., s;). We can apply
a similar gluing process in the case that f; are differential forms of the same degree (or any other set of
tensorial objects of the same type) on the spaces R?\x;.

Definition of the functions 7y, .. ., y; can be extended to the case that some of the parameters s are
equal to oo. If s, = oo, then the neck corresponding to e consists of two annular regions as in (4.27). In
this case, if v; is the source of ey, then y; is equal to 1 on the first set in (4.27) and vanishes on the second
set. If v; is the target of ey, then ~; is equal to 1 on the second set in (4.27) and vanishes on the first set. If
v; 18 not incident to ey, then ; vanishes on the neck corresponding to ey. Using this extension, we can
glue functions along the ribbon tree 7' with parameters (s1, . . ., s;) where some of the s could be oo.

4.3 Associahedron of Metrics

Suppose W is a 4-manifold with n 4+ 1 boundary components Yy, ..., Y,,. For a cyclic bisection A of the
set [n], let Y4 be a cut of W such that W\Y4 has connected components W} and W3 with:

W4 ={Ya}u{Y;|ig¢ A} OWZE = {=Ya}u{Y;|ie A}

We say the set of cuts {Y 4} is of associahedron type, if for any two uncrossed bisections Ay and A1, the
cuts Yy, and Yy, are disjoint. We then pick, for every cut Yy, a tubular neighborhood N (Y4) which is
diffeomorphic to [—2, 2] x Y4. We also assume that N (Y}, ) and N (Y}, ) are disjoint when Yy, and Yy,
are disjoint. Suppose 1" is an n-ribbon tree with interior vertices vy, . .., v; and interior edges ey, . . ., €;.
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Letalso Ay, ..., A; denote the cyclic bisections associated to T'. Then we define Y7 to be the union of the
disjoint cuts Yy, ..., Y4,. Thus each interior edge of 7' is in correspondence with one of the connected
components of Y4 and each leaf of 7" is in correspondence with one of the boundary components of .
The 4-manifold W\(—1,1) x Y7 has [ + 1 connected components, one for each interior vertex of v. We
denote the connected component of W\ (—1, 1) x Y7 associated to the interior vertex v; by W;. The set of
the boundary components of W; are given by the 3-manifolds associated to the edges which are incident
to v;.

Example 4.28. The 4-manifold W, introduced in Section 3, has k — j + 2 boundary components:

-Y;

j j+1 k—1
¢ M M . M} Y;,

J+1 j+2

The vertical and the spherical cuts provide a set of cuts of associahedron type for Wg .

For a manifold W as above, we can construct a family of metrics parametrized by the associahedron
IC,, where the cut associated to the face Frr of IC;, is equal to Y. We first choose a background Riemannian
metric gg on W which has cylindrical ends along the boundary components Yy, ..., Y,. We equip Y4
with a Riemannian metric h 4, and on N (Y4) we construct a smooth 1-parameter family of metrics ga(s),
for s € [0, 0), with the following properties:

(i) For all values of s, g4(s) extends to a smooth metric on W which is equal to go on W \ N (Y4).
(ii) For s < 1, we have g4(s) = go on N(Yy).
(iii) For s = 2, the restriction of g4(s) to the region Y4 x [—2,—1) U Y4 x (1, 2] is independent of s.

(iv) For s > 2, we have g4(s) = us(r)%dr? + hs on Y4 x [—1, 1], where the function us(t) is fixed in
Subsection 4.1.

For each cyclic bisection A, we also fix a function v4 : K,, — R U {0} such that 4 is zero on the
complement of F 4 x (My, 0] < K, and v4(x,s) = s — My for (x,8) € F4 x (Mo + 1,0] < Ua.
Then Proposition 4.25 implies that for any p € K,,, the numbers 74,(x) and v4, (x) are both non-zero
only if Ay and A; are uncrossed.

We can now describe the family of metrics on W. Fix an element x in /C,,. We need to define a
(possibly broken) metric g(x) on W. We firstly define this metric on N (Yy4) for a cyclic bisection A. If
~v4(x) is a finite number, then the metric g(x) on the tubular neighborhood N (Y}) is equal to g4 (ya(x)).
Otherwise, we define g(x) to be defined as follows:

(x) = ga(2) onYy x [-2,—1) u Yy x (1,2]
g B %sz2 +hyg onYy x[—1,1]

On the complement of the tubular neighborhoods N (Y4), we define g(x) to be equal to go. The properties
of the metrics g4 and the functions 4 show that g(x) is a well-defined metric and these metrics together
form a family of metrics on W parametrized by /C,,.
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4.4 Families of Gibbons-Hawking Metrics on ALE spaces

In the previous subsection, we introduced a general construction to define a family of metrics parametrized
by an associahedron. In particular, this construction can be applied to 1W}. For our purposes, we need to
modify this family of metrics. In this subsection, we construct families of metrics on some 4-manifolds
which appear as submanifolds of W} . The modified family of metrics on W} shall be discussed in the
next subsection.

Gibbons-Hawking Metric

Suppose 1, . . ., , are distinct points in R = R x {(0,0)} = R3. Suppose also mq, m1, . . ., my, is an
increasing sequence of integer numbers. Then define:

k
mi; —Mm;—1
u(q) = 21 ool qe R\{z1,..., 20} (4.29)

The function u is harmonic and hence o := *du defines a closed 2-form on the space R*\{z1,...,z,}
where * is the Hodge operator associated to the Euclidean metric. Integrality of the numbers m; implies
that o represents an integral cohomology class on R?*\{z1, ..., z,}. For 0 < i < n, let 9; be the straight
path (z;, z;+1) on the line R x {(0,0)} which is oriented in the increasing direction. Here we assume
that £y = —o0 and x,,+1 = 0. Then the cohomology class of « is Poincaré dual to:

1=0

There is also a U(1)-bundle L over R*\{z1, ..., x,} whose first Chern class is represented by a. The
divisor in (4.30) determines a canonical choice of this bundle. The total space of L in a punctured
neighborhood of z; is diffeomorphic to R>? x L(m;_; — m;, 1) where the first factor parametrizes

’q_$i|-

The set A = {z1,...,x,} represents an element x € P,. Given another representative A’ =
{2],...,z!} for x, there is a unique affine diffeomorphism ®4, : R3\{x1,...,2,} — R3\{2},..., 2} }.
We define B4 to be:

By = (| |RMNA)/ ~ (4.31)
A

where A runs over all representatives of x and ~ is the equivalence relation defined by the maps
@ﬁ,. A differential form 3 on By is given by differential forms 34 on R3\A4, for any A, such that
(®4,)*(Bar) = Ba. Similarly, we define any other geometrical object on By. The function u in (4.29)
does not give rise to a function on By. However, o = *du determines a well-defined differential 2-form
on By, which we denote by oy, x. Similarly, Qm x defined by the quadratic form:

u?(dx? + dy? + dz?)

is well-defined on Bx. The definition of annular decomposition is also compatible with respect to the
equivalence relation ~ in (4.31). Therefore, it makes sense to talk about annular decomposition of B.
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We also define X x by defining an analogous equivalence relation on the set of all U(1)-bundles L,
defined for different choices of representatives of x. If we are only interested in the diffeomorphism type
of the 4-manifold Xy, x and the choice of x is not important for us, then we denote this space by X,.

Let w be a connection on X, x whose curvature is equal to oy x. This connection is given by a
1-form on the total space of X, x, which we also denote by w. Consider the following metric on Xy, x:

9= Qmx + w? (4.32)

Since R3\{x1, ..., ,} is simply connected, any other connection w’ with curvature cy, x is the pull-back
of the connection w by an automorphism of the bundle Xy, x. Therefore, the metrics induced by w and w’
are isometric.

Proposition 4.33. The metric g on Xm x is an anti-self-dual asymptotically cylindrical metric with
positive scalar curvature.

Proof. Let g be the metric g/u, a metric in the same conformal class as g. (This metric depends on the
choice of the representative x.) The metric g, introduced by Gibbons and Hawking, is hyper-Kihler
[GH78]. In particular, it is an anti-self-dual metric and has vanishing scalar curvature. Thus, the metric g
is also anti-self-dual. The scalar curvature of g is given by the following formula:

R = GU_%Ag(u%)

where Ay is the Laplace-Beltrami operator* with respect to the metric §. In general, if ]? : L — Ris the
pull-back of a function f on R*\{x1, ..., z,}, then Ag( ) is equal to the pull-back of u'A(f) where
A(f) is the standard Laplace operator. Therefore, the scalar curvature of g is given by the following
expression which is always positive:

3 4, 9 2 2
iu (uxl + ug, + ums)

The metric ¢ has a nice asymptotic behavior. Firstly let & = 1 and z; be the origin in R>. Let also u
be the harmonic function ™—""0, where r = |q|. The associated U(1)-bundle, the 2-form, the connection
and the metric are denoted by Lg, g, wg and gg. The associated divisor is also equal to —mg0y — m101
which is invariant with respect to the dilation maps ¢ (q) = A - . The 2-form «y is also invariant with
respect to ¢,. Moreover, the contraction of o in the radial direction vanishes.

The bundle Ly is the pull-back of a U(1)-bundle l,,,, 1, on S 2 with respect to the radial projection
map 7. Here S? denotes the sphere of radius one in R? centered at the origin with the non-standard
orientation. Let v, [ € S? be the points (1,0, 0) and (—1,0,0). Then Iy, 1, is the U(1)-bundle on S*
associated to the divisor mol — mqt. For each choice of mg and mq, we fix a connection (i, m, on
ling,m, Whose curvature is represented by a harmonic 2-form (with respect to the standard metric o on
52). We can pick wy to be the pull-back connection 7* (1t m, ). Then the metric gy can be written as:

dr?
go = (m1 — Tn())27_72 + ﬂ*((ml — mo)QI() + ,ufno,ml) (4.34)

“We use the the convention of differential geometry for the sign of Laplace-Beltrami operator, i.e., A = d*d.
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where the quadratic form Iy on I, n, is the pull-back of the standard metric o on S 2 We reparametrize
L using the (orientation preserving) diffeomorphism ® : R x [,y m; — Lo, defined as follows:

d(t,x) =e ' . (4.35)

Then gy is the product metric (m; — mg)*dt* + h with h being the metric (my — mo)?Io + 2, ,n, ON
bmg,m -
Next, we consider the more general case that k£ > 1. Let the following balls be the set of territory balls
for {x1,...,z,}:
B, (1) By, (%2) T By, (zn) Bg(7)

For 1 < i < k, let D; be the punctured ball B, (x;)\{z;}, and D, be the interior of the complement of
Bgr(T). We also define D; to be the punctured closed ball B, j2(wi)\{x;} and Do, to be the complement
of Bag(Z). Consider the diffeomorphisms ¥; : (0,00) x S? — D; and ¥y, : (—00,0) x S? — Dq,
defined as follows:

U(t,y)=ri-e 'y U,(t,y)=R-e 'y (4.36)

As in (4.35), we can fix a canonical isomorphism of X, x|p, with the cylinder (0,00) X Iy, | m,
and a canonical isomorphism of X, x| p,, With (—00,0) X I, m, by lifting the above diffeomorphisms.
We also fix a connection w’ on Xm,x such that it agrees with the pullback of the connection fi,,, , s, On
Xm x|p, and the pullback of the connection fiy m, o0 Xmx|p,,. Then a := amx — F(w’) induces a
2-form on By which satisfies the following exponential decay condition for any point (¢,y) € D; or Dy,
and any integer number k:

IVFa(t,y)| < Cre M (t,y) € D; or Dq,. (4.37)

Here (t,y) is defined using the maps in (4.36), ¢ is a positive real number independent of &k and C}, is
a positive constant. Analogous to My in the previous section, we might need to increase the value of
constants § and C}, as we move forward throughout the paper. The above norm is defined with respect to
the cylindrical metric d¢> + o on D; rather than the Euclidean metric.

The 2-form a is closed and we wish to find a 1-form b with the similar decay condition as in (4.37)
such that db = a. For 1 < i < n or 4 = 00, we can write the restriction of a to D; in the following way:

alp, = ai(t) + Bi(t)dt
where (t) and §(t), for each ¢, are 2- and 1-forms on S2. Then define:
o0
bi(t) = —f By(s) ds 1<i<n 4.38)
¢

and .
bolt) = | Bl ds (4.39)

Then b; has the similar decay condition as in (4.37) over D; and db; =a. Suppose ¢; is a function on By
which is zero outside of D; and is equal to 1 on a neighborhood of D;. Then:

a—d(g1br + -+ + dnbn + Pube) (4.40)
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Figure 7: In this example, there are three territory balls. The ribbon neighborhood V; (respectively, 15)
connects the second territory ball to the first one (respectively, third one).

is a closed 2-form on R? which is supported in the complement of the union of IN)Z Since Bx\ | J BZ has
trivial second cohomology with compact support, we can find a 1-form b" supported outside of the union
of D;’s such that db’ is equal to the 2-form in (4.40). Therefore, the exterior derivative of:

b3:¢1b1+"'+¢nbn+¢ooboo+b/

is equal to @ and b is exponentially decaying as in (4.37). In particular, w := w’ + b defines a connection
on Xm x such that F'(w) = amx. Given this, it is straightforward to show that g is an asymptotically
cylindrical metric.

We can give an explicit choice for the 1-form &’. Although we will not use it here, this canonical
choice will be useful for us later when we need to repeat the above construction in family. To construct
the 1-form ¥/, let U;, for 1 < i < n — 1 be a small closed neighborhood of the path along the z-axis in
R3 which connects D; to 157;“. (See Figure 7.) By applying Poincaré lemmas for regular cohomology
and compactly supported cohomology [BT82, Chapter 3], we can reduce our problem into finding a
compactly supported 1-form b’ in V := R3\ (U D; L U Ui> such that db’ is equal to a given 2-form

compactly supported in V. Projection® along the red lines in Figure 7 identifies V with S? x R. By
another application of Poincaré Lemma for cohomology with compact support, we can reduce our problem
into finding a function f on S? such that df is equal to a given 1-form. This problem has a unique solution
if we require that the integral of f over S? is equal to 0. O

Definition 4.41. We call the 4-manifold Xy, x the Gibbons-Hawking manifold associated to the parameters
m and x. The metric g in (4.32) is also called the Gibbons-Hawking metric on X, x.

The definition of GH metrics can be extended to a slightly more general choices of parameters m
and x. For any sequence of (not necessarily increasing) integers (mo, ..., my) and {z1,...,2,} € R,

5To obtain a smooth map, we can enlarge V slightly and then use the red lines to identify V and S? x R.
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we can form a U(1)-bundle L over R®*\{z1, ..., x,}. Let H be the subspace of R? given by y > 0 and
z = 0. Thus, H can be identified with the standard upper half-plane. There is a M&bius transformation
acting on H which maps z; to co. This diffeomorphism of H is unique up to post-composition with an
affine transformation. Therefore, it induces a diffeomorphism from R3\{z1, ..., z,} to R3\{x}, ..., 2/}
which is well-defined up to post-composition with an affine transformation of R3\{x/,...,2/}. (In

/

particular, (z],...,2]) induces a well-defined element of P,.) This diffeomorphism can be lifted

to a diffeomorphism of L and the U(1)-bundle L’ associated to (m;, M1, ..., My, Mo, ..., M;i—1)

and (2),...,2,). If L admits a Gibbons-Hawking metric, then we can push-forward this metric to

rrn
L’. In summary, we can extend the definition of Gibbons-Hawking manifold Xy, x to the case that

m = (mo, ..., my) is increasing possibly after shifting parameters.

Associahedron of Gibbons-Hawking Metrics

Fix a sequence of increasing integers m = (mg, my, ..., my), let X, be the Gibbons-Hawking manifold
associated to m and the points z; = 7 + % for 1 < ¢ < n. Suppose A is a cyclic bi-section of [n] given by
the set {j,j+1,...,k}. Analogous to Section 3, let Si be the sphere that is centered at (#, 0,0) and has
radius % + v(k — j) with v being the same function as in Section 3. Then R3\S,z has two connected
components; one component contains the points x; with 7 < ¢ < k, and the other component contains the
remaining x;’s. Let M ,g be the 3-manifold given by the fibers of X, over Si. Then the set of cuts given
by 3-manifolds M J , for various choices of A, is of associahedron type. Thus, associated to this set of cuts,
there is a family of metrics Xy, on Xy, parametrized by KC,,. As in Subsection 4.3, we denote the union
of all cuts associated to an n-ribbon tree T by Y7. For each sphere S}, we fix a regular neighborhood
[—2,2] x Si such that if Sﬁ and S,]é are disjoint then the regular neighborhoods [—2, 2] x Sﬁ and
[—2,2] x Siz are also disjoint. These regular neighborhoods induce regular neighborhoods [—2, 2] x M ,g
of the spherical cuts M ,g

The connected components of X,,\Y7 are also Gibbons-Hawking manifolds. Let v be one of the
interior vertices and ey, . .., €4(,) be the outgoing edges of v, labeled using the ribbon structure around
the vertex v. Let l1, . .., [, denote the non-root leaves of 7', again ordered using the ribbon structure. We
write u; for the vertex of degree one incident to ;. Let the integers g, . . ., Td(v) be chosen such that

0<ip<ip < <igu)<n (4.42)

and the unique path from the root to any of the vertices u;;_,+1, . .., u;; contains the edge e;. Then we
say v has type (7o, - - -, i4(y)). The connected component of Xy, \Y7 corresponding to the vertex v is a
Gibbons-Hawking manifold associated to the parameters m’ = (m;y, My, - - -, My, )-

Example 4.43. Suppose T’ is the (6)-ribbon tree given in Figure 2. The types of the vertices vg, v1 and v
of T are listed below:

Uo:iozo,ilzl,i2=4,i3=6 ’U12i0=1,i1=2,i2=3,i3=4 Ugii0=4,i1=5,i2=6

The main goal of this subsection is to modify the family of metrics X,,, such that each metric in the
family is a Gibbons-Hawking metric. To achieve this goal, we need to do some preliminary work.

38



Fix an n-ribbon tree T" with [ interior edges whose interior vertices and edges are labeled with
vo, ..., vy and ey, ..., . Let (d(v;) + 1)-tuple m; is given by the type of the vertex v; and the n-
tuple m. The open face Fr is identified with Py, X -+ X Pg(,). Given (xo,...,%;) € Fr and
(s1,...,51) € (Mp, )!, we can form the 2-form Om, x, and the quadratic form Qm, x; on the space By, .
Suppose x = ®p(xg, ..., X, 81, -.,8;) € P, and & (respectively, @) is the result of gluing mg xo» - - - »
O, x, (respectively, Qmg xos - - - » @m,,x;)- Recall from the previous subsection that there are functions
Y0, - -+, : Bx — R such that:

l l
a= Z YiOCm; x; Q= 2 %’Qmmxi'
=0

1=0

We wish to compare (am x, @mx) With (&, @) We need to fix a metric Jx on By to perform this
comparison.

For any 2 < d < n and any x € P;, we wish to pick a metric Jx on By such that Jy satisfies the
following two conditions:

(i) We identify the interior of each territory ball in By with (0, 00) x S2 as in (4.36). Similarly, we
identify the interior of the complement of the parent ball with (—o0,0) x S2. The metric .Jy in
these open sets are given by dt? + o where ¢ is the standard metric on S2.

(i) The second constraint is a consistency condition with respect to the inductive nature of the spaces
‘P4, similar to the condition in Definition 4.23. Suppose 7T is a d-ribbon tree with two interior
vertices vg and v1. Suppose (x1,x2) € Frr and x = ®p(xg, X1, s) for s € (0, 00). Then the metrics
Jx, and Jx, on By, and By, can be glued to each other to define a metrics on Bx. We require that
Jx agrees with this metric when s € (M, ).

A family of such metrics can be constructed by induction on d. In the case that d = 2, we need to define
one metric that extends a given metric on the territory balls and the complement of the parent ball. We
choose these extensions in an arbitrary way. To carry out the induction step, we note that the first condition
determines the desired metrics on the territory balls and the complement of parent balls. The second
condition determines the metrics on the subset U of P;. Analogous to Proposition 4.24, we can use the
induction step to show that the metrics determined by (ii) are consistent. We extend these metrics in an
arbitrary way to complete the induction step.

We also need to define a function Ay : Bx — R for any 2 < d < n and any x € P,;. This function
is defined in terms of the annular decomposition of 8. The function Ax vanishes on any fat region of
B, is equal to ¢ on an end (0, 00) x S?, and that is equal to 7 — |¢| on a neck (—7, 7) x S2. Note that we
again identify ends and necks by cylinders of the form (a, b) x S? using diffeomorphisms similar to the
maps in (4.36).

Proposition 4.44. The constants § and C}, can be chosen such that:

IVF(mx — @)]x < Cpe 0+ IVF(Qux — Q)|x < Cre 0 +2) (4.45)

where V¥ is defined with respect to the metric Jy, | - |x is the point-wise norm with respect to Jy and

T = min;(s;).
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Proof. We verify the inequalities in (4.45) on a neck region for constants § and C which are independent
of 51, ..., 5. Analogous arguments can be used to prove similar inequalities for fat regions and cylindrical
ends. Moreover, An inductive argument and compactness of associahedra can be employed to show that
these constants can be made independent of xg, . . ., X;.

We assume that the neck region is in correspondence with the interior edge e;. We also assume that
the source and the target of e; are vy and v;. Moreover, e; appears as the first element with respect to
the ribbon structure of the vertex vg. Then the neck region has the form (%, %) x 52 and the
restriction of the metric Jx to this region is given by the cylindrical metric d¢? 4+ o. The 2-form & on
[sr Mo 1Moy 2 s equal (0 (i x» 0N 22551, $12M0] 5 2 s equal to a convex linear combination

@, %] x 52 is equal to aum, x, - Therefore, it suffices to show that

Mo—s1 s1—Mpo )
6 ’ 2

of Amg xo> ®my x;> and on (

mx — Oimy x, has the desired decay properties on ( x S2. A similar argument can be

applied to Qm x — Q.

Suppose x and x( are represented as below:
X2 <Tog<--<Tp xO:x’1<az’2<-~-<x’d(vo)

Let the vertex vy have type (io, . . . ,%4(y,))- In order to obtain x from x¢, we replace each point x; of
X0 with ¢; —4;_; points which belong to the ball B, /4(x3-) with r; being the radius of the territory ball
around ;. In fact, we can substitute B, /4(2;) with Be—r,. /4(7;) because s, ..., s; are larger than 7.
We also need to include ig + n — ig(y,) points which belong to the complement of the ball Byr r(T)
where Br (') is the parent ball of xo. Among these points, iy elements are less than 2} and n — Td(vo)

elements are greater than xfj(vo). Moreover, the neck region associated to e; is the region between the
M,

. .. _ Mo _ My
balls centered at 2 and with radii r1e~ 2 and r1e S1t75,

The 2-form o x is given by:

(x — z)dy A dz + ydz A dx + zdz A dy
g — |3

Zn] (mg—1 — my)
k=1

Suppose q is a point in the neck region associated to the edge e;. This region can be regarded as a subset
of By,. The 2-form oy, x, at a point ¢ in this region can be described as follows. In the above sum,
replace x;, with xg if z, € By, /4(953-). Moreover, remove the terms that the corresponding x; belongs to
the complement of Br(Z’'). Then the resulting expressions is equal to am, x, at the point g.

The above description of ayy, x, implies that A (cum,x — @) at a point ¢ in the neck region associated
to the edge e; can be bounded by finding appropriate upper bounds for the expressions of the form:

(x —xp)dy A dz +ydz Ade + zdz Ady (z —2})dy A dz + ydz A dx + 2zdz A dy

vk
Vi FRrE —p .
(4.46)
where x;, belongs to the territory ball of x}, and:
T —zp)dy Adz+ydz Adr + zde A d
|vk(< k)dy y Y 4.47)

lqg — x|
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where xj belongs to the complement of Bgr(T'). It is straightforward to see that there is a constant C

—a’||lg—z'|

such that the expression in (4.46) is less than C o P and the expression in (4.47) is less than
J

.

C ;g_i;‘ . These inequalities imply that (4.46) and (4.47) on the region between the balls centered at z}
M M, s1—M,

with radii rie” 2 andre” 2 23 are less than Cre~ %+ for an appropriate choices of ¢ and Cy,.

A similar argument can be employed to estimate the difference between « and o3 on the region between

. .. _ My _s1-My _ Mo ..
the balls centered at x’l with radii e 2 5 and rie *'* 2 . By combining these results, we can

verify (4.45) over the neck region associated to the edge e;. 0

T+A

As the next step, we need to fix a connection on wpy x on Xy x for any 2 < d < n, m =
(mig, ..., m4,) and x € Kg such that the curvature of wy, x is equal to Oy x and these families of
connections satisfy the analogue of Proposition 4.44. As in the proof of Proposition 4.33, we firstly fix a
connection w} , . on X,y x and then modify it by adding an appropriate 1-form. The connections w/ , .
are required to éatisfy the following two conditions: ’

(i) On each territory ball and on the complement of the parent ball, the connection w] , , is the
pull-back of a connection of the form fi,,, ..

(i) Suppose T is a d-ribbon tree with two interior vertices vy and v;. Suppose m{, and m/ are defined
using m’ and the types of the vertices vy, v1. Suppose (x1,x2) € Fp and x = ®p(xq, x1, 5) for
s € (0,00). Then the U(1)-connections w;n,hxl and w;m,Q’XQ on Xpy, x, and Xp,; «, can be glued
to each other to define a connection on X,,, . We require that w, , . agrees with this connection

when s € (M, ).
These two conditions are similar to the properties that the metrics Jx satisfy. The same inductive argument
can be used to prove the existence of the family of connections satisfying these two properties.

Proposition 4.48. The constants § and Cj, can be chosen such that if ayy x 1= 0w/ x — F(wmy x), then:
V¥ (am x)|x < Ce 0 (4.49)

where V¥ is defined with respect to the metric Jy and | - |x is the point-wise norm with respect to Jx.

Proof. Given a fixed m’ and x, we firstly show that there are constants C}, and ¢ such that (4.49) holds.
This is essentially a consequence of (4.37). Next, let " be a d-ribbon tree, (X, ...,X;) € Fr < Kq4 and
(51,...,81) € (Mg, 0)! such that x = ®7(xq,...,X;,51,...,5). Let also m; be the vector associated
to x; by the d-tuple m’. Then the 2-forms oy, x, determines a 2-form & on By and Proposition 4.44
asserts that V¥ (& — any x) is bounded by Cre 9. This observation can be used to show that there

are constants Cj, and  which work for every point in ®7({(xo,...,x;)} x (Mp,0)!). Next, we can
show that the constants C and § can be made independent of x using induction and compactness of
associahedra. O
Proposition 4.50. There is a 1-form byy x for any 2 < d < n, m’ = (m;,, m;,,...,m;,) and x € Py
satisfying:
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(l) d(bm’,x) = Om’ x»
(ii) | Vb xlx < Cre 0

(iii) Fix (Xq,...,%;) € Frand (s1,...,s) € (My, o) and let:

X=(I)T(Xo,...,Xl,Sl,...,Sl)Epn. (4.51)

Suppose b is the result of gluing b xo» - - -» bm, x;- The constants Cy, and 6 can be chosen such
that: N

[V (b x — D) |xe < Cre 2T+ (4.52)

where V¥ is defined with respect to the metric Jy,
and T = min;(s;).

- |x is the point-wise norm with respect to Jx

We can use Proposition 4.50 to define a Gibbons-Hawking manifold X,,, x for each d-tuple m’ =
(Mg, - .., m;,) and x € Kq. The metric on this space is given by:

I x = Qm,x T Wiy 5 + b ) (4.53)

Proof of Proposition 4.50. Let x € K4 and a be a closed 2-form on By which decays exponentially on
the ends. Given an annular decomposition of By associated to a d-ribbon tree T, we can define a 1-form b
such that db = a by modifying the proof of Proposition 4.33. For an interior edge e of 7', let the associated
neck region to e have the form ( -3 %) x S? in the cylindrical coordinate. Analogous to (4.38) and (4.39),
we can define a 1-form b, on this neck region such that db, = a. Let the restriction of a to the neck region
be equal to a(t) + B(t)dt with a(t) € Q?(S?) and (t) € Q(S?). There is a unique 1-form b.(0) on S?

such that db.(0) is equal to «(0) and d*(b.) vanishes®. Then we define:

be(t) := be(0) + L B(s)ds

Let ¢, : R — [0, 1] be a bump function supported in (-7, 7) such that ¢ is equal to 1 on (=5 +1, 5 —1).
The closed 1-form a — d(¢eb.)) is supported outside the subset (—% + 1, 7 — 1) x S? of the neck region.
By repeating the same construction for all neck regions and using the 1-forms in (4.38) and (4.39), we can
essentially reduce the problem to the case that a is supported in fat regions. (In fact, we have to slightly
enlarge the fat regions.) Now we apply the last step of the proof of Proposition 4.33 to each fat region to
complete the construction of the desired 1-form b. This construction has three properties which are useful

for us:

(i) this construction can be performed in family for all elements x € Xy which have an annular
decomposition with respect to the ribbon tree 7T';

(i1) this construction is linear in a;

(iii) If @ and its derivatives are exponentially decaying on an end, then b and its derivatives are also
exponentially decaying with the same exponent. A similar claim also holds for neck regions.

®We use the standard metric on S? to define d*.
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The above construction allows us to construct the 1-forms by, x for any 2 < d < n, m' =
(Mig, M4y, - .., m;,) and X € Pg. The 1-form by, x is given as a sum of 1-forms:

Do ix = oy + Opr s 7+ + Ui
such that if x is given as in (4.51) for a d-ribbon tree with [ interior edges, then:
by =0 if x € ®p(Frx(2My,©)), k> dim(Fr) = d—1—2

The 1-forms b]fn/,x are constructed by induction on k. Firstly let & = 0. Let Frr be a 0-dimensional
face of an associahedron KCg with d < n. Then for any point x € ®7(Fr x (My,0)?~?), we can
consider the the annular decomposition of 5 with respect to the tree 1. We apply the construction
of the previous paragraph to define a 1-from Zom,’x for each point in this neighborhood. Let also ¢ :
R — [0, 1] is a smooth bump function supported in (M, 00) which is equal to 1 on (2Mj, 0). Then
If x = &7(xo,...,X,81,---,5), then bgj,’x = o(s1)...0(s1) -Z?n,’x. This 1-form can be extended
trivially to the points x which are not close to the vertices of K;. By construction, db?n’,x = O/ x if

x € &7 (Fp x (2My, 0)4=2) for a 0-dimensional face F'r. Moreover, b° , _satisfies the decay condition
in Item (ii) of the statement of the proposition. Item (iii) is also satisfied if F7r is O-dimensional. Next,
we consider the case that Fr is 1-dimensional. We repeat the above construction for the points in
S (Fr x (Mp,0)%=3) and the 2-form apy x — db®, . In the present case, we again use the annular
region with respect to 7" and define a 1-form Elln, . for any point in @7 (Fr x (Mp,0)?~3). Then we
modify this 1-form by the bump function ¢ and define a 1-form bl , on P, which is equal to gin, « on

Or(Fr x (2My, 0)473). Repeating this construction for the faces of all dimensions in K4 provides the
1-forms satisfying the required properties. O

Now we can come back to our main task of constructing a family of metrics on X, parametrized by

IC,.. We observed that if 7" is an n-ribbon tree with [ interior vertices vy, . . ., vj, then X,,\Y7 has [ + 1
connected components Z;, ..., Z;", and Z;" is diffeomorphic to the Gibbons-Hawking manifold X,
wehre m; = (mi,, My, .. . ,mid(v_)). Here (i, i1, - . ,%4(v,)) is the type of the vertex v;. We already

defined a family of Gibbons—Hawkling manifolds {Xm, x, }x,ek d(vs)" Therefore, we can push-forward the
Gibbons-Hawking metrics on these manifolds to Z;“ using a family of diffeomorphisms:

. +
S xi P Xmixe = 24

To be more precise, (( fmgxo)#(Imo.x0)s - - - » (fmyx;)(9m,,x,)) would define a metric X\ Y7 for each
(Xo, A ,Xl) € FT.

Proposition 4.54. For any n-ribbon tree T', and any choice of (m;, x;), the diffeomorphism X, x, can be

chosen such that the metrics (( fmg xo )+ (9mo.x0)s - - - » (fmyx; ) (9m, x,)) form a family of asymptotically
cylindrical metrics Xy, on Xy, parametrized by ICp,.

Proof. To define the maps fm, x;, it is helpful to limit ourselves to a special type of diffeomorphisms.
Suppose H denotes the upper half-plane:

H = {(z,y) e R*| y > 0}
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and JH is the subset of H given by the pairs (x,0). Suppose €2 is a simply connected open subset of H
such that 0€ (as a subset of H) is a union of smooth curves, {2 n 0H consists of k open intervals, and
02 n 0H consists of the end points of the intervals in {2 n 0H. Let S be the solid obtained by rotating
Q around the axis dH. Suppose also D < S is a divisor supported in the z-axis. Then we can form the
U(1)-bundle L associated to D. The manifolds Z; are obtained this way by definition.

Suppose €' is another region in H which gives rise to the manifold S’. Suppose also L’ is a U(1)-
bundle over L associated to a divisor D’ supported in the x-axis. We assume f is a diffeomorphism from
a regular neighborhood of 02 U (€ n dH) in H to a regular neighborhood of 02’ U (' n dH) in H’
which maps 02 to 9,  n 0H to Q' n 0H and the divisor D to D’. If f : Q — €’ is an extension of f,
then f induces a diffeomorphism from L to L’ in an obvious way. We call any such diffeomorphism from
L to L’ anice diffeomorphism. The key feature for us is that the space of all nice diffeomorphisms from
L to L' is a non-empty contractible space [Sma59].

Let T" be an n-ribbon tree and v be a vertex of degree d of T'. Let Z be the connected component
of X\ Y7 corresponding to the vertex v. Let also m’ be the (d + 1)-tuple defined using the type of the
vertex v and m. We need to define diffeomorphisms fry/ x : X/ x — Z * for each x € P,;. We construct
these diffeomorphisms by induction on d such that they satisfy the following conditions:

(i) far x is a nice diffeomorphism depending smoothly on x € Py

(ii) The diffeomorphism fy/ ,,, maps the fibers of X,/ x over the ends (respectively, necks) of By to the
corresponding ends (respectively, necks) of Z determined by regular neighborhoods of the spherical
cuts fixed earlier in this section.

(iii) Suppose S is a d-ribbon tree with vertices vy, ..., v; and the edges eq, ..., ¢;. Suppose also
m,; is the (d(v;) + 1)-tuple determined by the type of the vertex v; and the d-tuple m’. For any
(Xo, ce ,Xl) € Pd(vo) X oo X Pd(vl) and (81, e ,Sl) € (Mo, OO]Z, let:

x = Pg(x0,...,X;,81,.-,5) (4.55)

The fat regions of ‘B can be identified with the fat regions of B, ..., By,. In particular, we can
compare vk Jm x Testricted to the fibers of Xy, x over fat regions of By to the maps \VA S, x;
restricted to the fibers of X, x; over fat regions of 2B,. We require that the distance between these
maps are controlled by Cre™" where 7 = min;(s;).

In order to show how the induction step can be carried out, let 7' and v be chosen as above. We
firstly define fpy x in the case that x = ®g(xo,...,x,s1,...,5) as in (4.55) for a d-ribbon tree S
representing a vertex of Ky. Condition (ii) determines fp, x on the fibers of Xy, x over the ends and
the necks of By. We extend fyy x to the fibers over fat regions such that Conditions (i) and (iii) are
satisfied in ®g(Fs x (Mp, 0]?~2). Next, let S represent an edge of /Cz. We can use contractibility of
space of nice diffeomorphisms to define fy, x in the case that x is given as in (4.55). Repeating this
construction for all faces of Xy allows us to define fy, x for x € P4. Propositions 4.44 and 4.50 guarantee
that the push-forward metrics define a family of asymptotically cylindrical metrics on X, parametrized
by IC,,. O
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4.5 Gibbons-Hawking Families of Metrics on W,ﬁ

Gibbons-Hawking manifolds are relevant for the present paper because they appear as submanifolds of
the 4-manifolds ;. Suppose T'is a (k — j + 1)-ribbon tree with interior vertices vy, . .., v;. Suppose
also Y7 is the cut in W,g given by Example 4.28, and W, ..., W; are connected components of a the
complement of a regular neighborhood of Y7 in W,g . Suppose the component W; has the property that
any boundary component of W; is given by a spherical cut M j,l < Yp,with1 < k' — j/ < N. Then Wj is
diffeomorphic to a U(1)-bundle defined over a subspace 5 of B in (3.2) which is bounded by spheres Sii,
with 1 < k¥’ — 5/ < N. In particular, W} is diffeomorphic to a Gibbons-Hawking manifold X, where m
is determined by the intersection of B with the divisor 0 in (3.3). In this case, we say W is of GH type. If
W; is not of GH type, then we say it is of NGH type.

In Theorem 4.56, we shall construct a family of metrics W{c on Wg such that all components of
GH type appearing in the family has a Gibbons-Hawking metric. In order to construct this family of
metrics, we firstly need to fix metrics on the boundary components and cuts that show up in ng . We
fix arbitrary metrics on 3-manifolds Y; which are (/N + 1)-periodic in . For a spherical cut or boundary

-/
component M, g,, we fix the metric o + ,u?n .y for an appropriate choice of mm and m/. Here o is induced

by identification of the spherical base of M 7" with S2 and [, m is the U(1)-connection introduced in
the proof of Proposition 4.33. For any Y in this family of 3-manifolds, we choose regular neighborhood
[—2,2] x Y such that if two three manifolds Y and Y” in this family are disjoint, then [—2,2] x Y are
[—2,2] x Y are also disjoint.

Theorem 4.56. There is a family of asymptotically cylindrical metrics Wi on W,g parametrized by
ICk—;j+1 such that the following two conditions hold for any (k — j + 1)-ribbon tree T':

(i) the cut associated to Fr is equal to YT given by Example 4.28;

(ii) let W, the connected component of W,ﬁ \Yr associated to a vertex v, be of GH type diffeomorphic
to Xm where mis a (d(v) + 1)-tuple (mq, . .., mq()). The restriction of the family of metrics
W{C to Fr induces a family of metrics on W parametrized by K y(,y. We require that the metric
corresponding to x € Kg,) on W is the pull-back of the Gibbons-Hawking metric on Xm x
constructed in the previous subsection.

Proof. A family of metrics parametrized by an associahedron, determines families of metrics on the
connected components of the complement of cuts. Each of these families of metrics are parametrized by
an associahedron. In order to prove the proposition, we inductively construct such families of metrics
on any component of W,ﬂ \Yr where T is a (k — j + 1)-ribbon tree. To be more precise, if v is a vertex
of T" with degree d and W is a connected component of W,g \Yr corresponding to v, then by induction
on d, we construct a family of metrics on W parametrized by IC;. We also show that we can assume the
following additional conditions hold:

e Each face S of K; determines a union of cuts Yg in W. Let S have vertices vg, ..., v; and

d; = d(v;). Let also Wy, ..., W, be the connected components of the complement of the regular
neighborhood of Y in W. Then W; also appears as a connected component of the complement of
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a union of cuts in W,g . We require that the restriction to F'g of the family of metrics on W is given
by the families of metrics on W; parametrized by Ky, .

e If W is of GH type diffeomorphic to the space X,,, then we demand that the metric on W
corresponding to x € Ky is induced by a diffeomorphism fi x : Xmx — W. Moreover, we
require that f, x satisfies the same properties as (i), (ii) and (iii) in the proof of Proposition 4.54.

In order to preform the induction step, we assume that W is of NGH type. In the case that W is of
GH type, the proof is similar to the proof of Proposition 4.54. Our induction assumption specifies the
metrics on W parametrized by the points in the boundary of Ky. In order to define the metrics associated
to the points in Py, we fix a function 7 : P; — R>? for each face Fr of Ky with codimension 1. The
function ~r is supported in &7 (Fr x (My, 0)). Moreover, the value of v at & (xo, x1,t)is equal to
el if (xg,x1) € Fr and t > 2My. We also fix a compactly-supported function g : Ky — R>? and a
metric go on W which has cylindrical ends corresponding to the metrics fixed on vertical and spherical
cuts. We also assume that 7 is chosen such that g and the functions {y7}7 do not have a common zero.
The metric on W parametrized by x € Py is defined as follows:

Y0(x)g0 + X y7(%) - g (%)
Yo(x) + Xpr(x)

Here gr(x) is a metric on W which we only need to define for the points in &7 ((My,0) x Fr).
If x = ®p(¢, (x0,%1)), then by induction we have a broken asymptotically cylindrical metic on W
associated to the point (xp,x1). We glue these two metrics as it is explained in (4.5) and the following
discussion there. The resulting metric determines v (x). It is straightforward to see that the above family
of metrics has the required properties. O

5 Moduli Spaces of Anti-Self-Dual Connections

This section concerns the moduli spaces of ASD connections that appear in the construction of surgery
exact polygons. In the first subsection, we review some general facts about such moduli spaces. Some
special properties of moduli spaces of ASD connections over Gibbons-Hawking spaces are discussed in
Subsection 5.2. In the final subsection of the present section, we study the moduli spaces of completely
reducible connections on X n(l).

5.1 Moduli Spaces on Manifolds with Cylindrical Ends
Chern-Simons Functional and Flat Connections
Suppose Y is an oriented connected closed 3-manifold and +y is a 1-cycle in Y. The 1-cycle y determines

a U(N)-bundle F on Y whose isomorphism class depends only on the homology class of . There is a
Chern-Simons functional CS on the space of connections on the bundle £ which is well-defined up to a
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constant. For two connections Ay and A, on E, we have:

1
CS(A;) — CS(Ap) = 6N 2 J[o 1]thr(ad(F(A)) A ad(F(A))).

Here A is a connection on [0, 1] x Y whose restriction to {i} x Y is equal to A; for i = 0, 1. Moreover,
ad(F'(A)) is a 2-form with coefficients in End(su(P)) and tr is given by taking fiberwise trace. We
fix an arbitrary connection on AN E and focus only on connections on E whose central part is equal
to this fixed connection on AN E. This space is invariant with respect to automorphisms of £ whose
fiberwise determinants are equal to 1. The stabilizer of a connection n with respect to the action of such
automorphisms is denoted by I';,.

A connection A is a critical point of the Chern-Simons functional, if Fy(A) € Q2(Y, su(F)) vanishes.
In general, for a connection A, Fy(A) denotes the trace-free part of the curvature of A. We will write
R(Y,~) for the solutions of F(A) = 0 modulo the action of automorphisms of E with determinant
1. An element n of R(Y,~) is non-degenerate if the Hessian of CS at 7 is non-degenerate modulo
the action of the gauge group. This is equivalent to say that the cohomology group H'(Y,ad(n)) is
trivial. In general, we will write h’(n) for the dimension of the cohomology group H'(Y,ad(n)). If
CS has degenerate critical points, we can make a small perturbation of the Chern-Simons functional
using holonomy perturbations such that the critical points of the resulting functional are non-degenerate
[Don02, KM11]. When it does not make any confusion, we denote the critical points of such perturbed
Chern-Simons functional with R(Y, ), too.

A pair (Y, ) is called admissible if there is o € Ho(Y, Z) such that the algebraic intersection number
of v and o is coprime to N. For an admissible pair (Y, ), the elements of R(Y,~) are irreducible. That
is to say, for any n € R(Y, ), the stabilizer I';, consists of only scalar transformations. In fact, even after
a small perturbation of the Chern-Simons functional the same result holds [KM 11, Lemma 3.11].

There are two other families of pairs (Y, ) which appear in this paper. If Y is the lens space L(p, q),
then the (unperturbed) Chern-Simons functional has non-degenerate critical points for any choice of ~.
Let ¢ denotes a flat U(1)-connection on L(p, q) whose holonomy along the generator of Hy(Y,Z) is
equal to €2™/?_ Then any flat U(N)-connection on (L(p, ¢),~) is isomorphic to ("' @ - - - @ ('~ where
0 < 4; < pand the sum 41 + - - - + 4y is determined by the homology class of +. In particular, all elements
of R(L(p, q),~) are reducible. We shall be also interested in the case that Y = S x S2. The space
R(S' x 8% ~) is empty unless 7 represents the trivial homology class.

By taking holonomy along the S* factor, we can identify R(S* x S2, f) with T/W where T is the
space of diagonal matrices in SU(N) and W = Sy is the Weyl group. The space T'/W can be described
as the quotient of the Lie algebra:

f={(tl,...,tN):t1+"'+t]\[=0} 5.1

by the action of the semi-direct product W x L, where L = Z"  tis the root lattice of SU(N), acting by
translation. The Weyl group W also acts by permuting the coordinates. To identify 7'/TV with a standard
simplex, we introduce functions r; : t — R, given by

R ti+1—ti 1< N
! ti1—ty+1 2=N

47



Then the map r = (r1,...,ry) : t — RY identifies t with the plane r; + --- + ry = 1. Let A§V71
denote the locus in t cut out by the inequalities r; > 0 for all <.

Proposition 5.2. AY;_| is a fundamental domain for the action of W x L on t. The elements of T /W
with repeated eigenvalues are in correspondence with the boundary of A’}V_l.

Proof. Define a width function w : RN — R by

w(tl, v ,tN) = sup ’tl‘ — tj|.

Z?J
Given any vector t = (t1,...,tn) € t, we can find a unique vector k € L such that w(t — k) < 1. Indeed,
if we define a positive integer d by
N
d= Z [ti]7
i=1

and choose a permutation o such that:

toi) — [ta()] < to@ir1) — [to(ivn)]

for every i, then the components of k are given by

[to] —1 o(i) <d
Ko i) :{ o

[to)] o(i) > d

We can then find a permutation 7 such that

br(iy = Fr(i) < tr@iv1) — Fr(iv1)

for every i. It follows that the element (7, —k) € W x L takes ¢ into AY;,_;. To complete the proof, we
must show that no two points in Al;_; can be taken to one another by an element of W x L. But this
follows from the uniqueness of k, the fact that width is preserved by the action of W, and the fact that 7 is
unique up to right multiplication by an element of the stabilizer of ¢ — k. O

Moduli Space of ASD Connections

Let W be a compact oriented smooth four-manifold with non-empty boundary and c be a 2-cycle. Let
E be the U(N) bundle determined by c. The bundle E induces a U(N)-bundle on W which is also
denoted by E. We assume that (W, ¢) satisfies the following condition:

Condition 5.3. For any boundary component (Y,~y) of (W, c), either the 3-manifold Y is a lens space, or
the pair (Y, ) is admissible.

We also assume that for each admissible boundary component (Y, ) of (W, ¢) the Chern-Simons func-
tional is perturbed such that all of its critical points are non-degenerate.
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Let Ay and A; be two connections on W™ such that the restriction of A; on any end [—1,0) x YV
of W is the pullback of a critical point of the corresponding (perturbed) Chern-Simons functional on
(Y,~). We say Ag and A; represent the same path along (W, c) if there is an automorphism u of E with

determinant 1 such that:

AO - U*Al
is supported in W < W ™. The equivalence classes of this relation are called paths along (W, c). We
say the restriction of a path p, represented by Ay, to a boundary component (Y, ) of (W, ¢) is equal to

a € R(Y,~) if the restriction of Ag to the end [—1,0) x Y is the pull-back of a connection that represents
a.

For a path p along (WV, c) represented by a connection Ay, let A, (W, c) be the space of connections of
the form Ay + a where a € L} (W™, A! @ su(E)). A differential form a on W is in L? ; if it belongs

to L2, . Moreover, the form |r|~%a(r,y) on [—1,0) x Y is required to be an element of L?. Here k > 3
and ¢ is a small positive real number. Note that all elements of A, (W, ¢) has the same central part. For a
connection A € A, (W, c), the Chern-Weil integral:

1
K(A) = 6N

fw+ tr(ad(F(A)) A ad(F(A))). (5.4)

is called the topological energy of A. This integral is independent of A and depends only on p. We also
define the gauge group G,(W, c) as follows:

Gp(W,¢) := {u e Aut(E) | det(u) = 1, Va,u e Li(;(I/V, A ®@su(E))}.

The quotient of A, (W, ¢) by the action of the gauge group G,(W, c) is denoted by B, (W, c). We say
a connection A € A, (W, ¢) is irreducible if the stabilizer I'4 of the action of G,(W, c) has positive
dimension.

After fixing a metric on W1 compatible with cylindrical ends, we can define the moduli space of
ASD connections on W . Firstly assume that the critical points of the Chern-Simons functional for all
boundary components of (W, ) are non-degenerate. A connection A € A,(W, c) is ASD if F; (4), the
self-dual part of Fy(A), vanishes. This equation is invariant with respect to the action of G,(W, ¢) and
the quotient space of solutions forms a subspace M, (W, ¢). In general, holonomy perturbations of the
Chern-Simons functional associated to a boundary component (Y, ) of (W, ¢) induces a gauge invariant
perturbation of the ASD equation on [—1,0) x Y. Using a smooth function supported in (—1,0) x Y,
we can extend this perturbation to W . In the case that we need to perturb the ASD equation to achieve
non-degenracy of critical points, a connection is called ASD if:

Fi(A) +U(A) =0 (5.5)

where U(A) is the sum of the perturbation terms induced by the perturbations of the Chern-Simons
functionals. We still denote the space of the all ASD connections modulo the action of the gauge group by
My (W, ¢). Let (Yy,70), - - -, (Yx, Vi) be boundary components of (I, ¢). Let also «; be the restriction
of p to (Y3, ;). We will also write M,(W, ¢; a, . . ., ag) for M, (W, ¢) if we want to emphasize on the
limiting connections of the elements of the moduli space of ASD connections. For the sake of exposition,
we assume that there is no need to perturb the Chern-Simons functional in the rest of this subsection.
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There is a variant of the moduli space M, (W, c) which is useful for our purposes. Let (Y,~)
be a boundary component of (W, c). Let also p be a path along (W, c¢) whose restriction to (Y, )
is given by a € R(Y,~). The restriction of an element of G,(W,c) to {t} x Y < (—1,0) x Y is
asymptotic to an element of I';, as ¢ approaches 0. Let G, ,(W, ¢) be the subgroup of G, (W, c) consisting
automorphisms which are asymptotic to the identity on the end (—1,0) x Y of W*. Then the moduli
space of ASD connection in A, (T, ¢) modulo the action of G, ,,(W, ¢) gives rise to the framed moduli
space Mp,n(I/V, c). There is an action of I, on the based moduli space Mpm(I/V, ¢) and the quotient
space is equal to M, (W, ¢). This construction can be extended in an obvious way to the case that (Y, )
is replaced with a union of boundary components of (W, c).

To any ASD connection A we can associate the following Fredholm complex:

+
L3, 5(W,su(E)) 245 L25(W, A @ su(E)) G, L, s(W,AT ® su(E)) (5.6)

The second map is the linearization of the ASD equation. We say A is regular if the cohomology group
Hi associated to the last term of the above complex vanishes. Suppose (Y, ) is the union of all boundary
components of (W, ¢), n is an element of R(Y,~). If A is a regular ASD connection representing an
element of the framed moduli space Mp,n(I/V, c), then Mpm(W, c) is smooth in a neighborhood of [A]
and the cohomology group H }‘ associated to the middle term in the above complex can be identified with
the tangent space of Mp,n(I/V, c) at [A]. In Section 7, we review to what extent we can achieve regularity
of the moduli spaces that appear in this paper by perturbing the ASD equation.

Next, we consider pairs (W, ¢) that satisfy the following condition:

Condition 5.7. For any boundary component (Y,~) of (W, c), the 3-manifold Y is a lens space, the
pair (Y,7) is admissible, or the pair is diffeomorphic to (S* x S%, &). Moreover; there is exactly one
boundary component which is diffeomorphic to S* x S2.

The critical points of the Chern-Simons functional for the pair (S x S?, ) are degenerate. However,
they are non-degenerate in the Morse-Bott sense and we can construct well-behaved moduli space for the
pairs (X, ¢) satisfying (5.7) without much additional work. (See [Tau93, MMR94, Don02].) We can define
paths along (W, c) as before. Let p be a path whose restriction to S* x 2 is equal to a € AY, ;. The same
constructions as above give rise to the definition of the spaces A,(W, ¢; o), G,(W, ¢; o), Bp(W, ¢; o),

M, (W, ¢; o) and Mp’a(VV, ¢; o). It is also important to consider the moduli spaces where the limiting
connection o on S x S? is free to vary.

Suppose A;Ql denotes the interior of the simplex A%, ;. Let p be a path along St x S? represented
by a connection A such that the restriction of Ay to S 1w §2is equal to g € AR;)_I. We can arrange for

a family of connections A, for a € A?i;lp such that A, depends smoothly on ¢, the restriction of A, to
[—1,0) x (S' x S2) = W is the pull-back of a connection representing o, and the restriction of A,, to the
complement of a neighborhood of [—1,0) x (1 x 5?) is equal to Ag. We can also assume that stabilizers of
the restrictions of A, to S x S are all equal to each other. We define A, (W, c; AR?_I) to be the space of

all connections which can be written as A(a) + a where a € AR,O_l and a € Li s(WT Al ®@su(E)). The
gauge groups G, (W, ¢; o) are independent of < and they act on A, (W, ¢; AR}ll). Let B, (W, ¢; As’v(ll)
be the quotient space. The moduli space of the elements in B,(W, ¢; AR?_I) represented by the ASD
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connections are denoted by M, (W, ¢; AR,O_l). If we only mod out the solutions of the ASD equation
by the based moduli space G, (W, c; @), then the resulting space is denoted by Mp’ N (W, ¢ AR,OA).

The analogue of the ASD complex for a connection A which represents an element of M, (W, c; AR}ZI)
and is asymptotic to o € AR,O_l is the following Fredholm complex:

o dj
L1 5(W,su(E)) -2 LE (W, A @ su(E)) @ TaAy | — L 5(W, AT @su(E))  (5.8)

A point [A] € M,(W,¢; AS{,O_l) is regular if the cohomology group at the last term of the above
deformation complex vanishes. The moduli space Mp ate (W Ak;ll) is a smooth manifold in a
BN

neighborhood of a regular connection. We can repeat the same construction in the case that A’R,Oil is
replaced with an open face I of A%, ;. In particular, we can form the moduli spaces M, (W, ¢;T),

~

My, (W, ¢;T') and the analogue of (5.8) for an element of M, (W, ¢;I"). The regularity of an element of
M, (W, ¢;T') is again defined using the associated ASD complex. Even more generally, if V) is a subspace
of AY,_;, we define:
Myp(W,e,V) = || My (W, ¢, 8)
BeV
where p(/3) is given by composing p and a path in R(S! x S?) from the endpoint of p to /3.

Suppose (W, ¢) is a 4-manifold satisfying either Condition 5.3 or Condition 5.7. Suppose p is a path
along (W, c) and A € A,(X, c) is an arbitrary connection. The ASD operator associated to A, denoted by
D4, is defined as follows:

Da:=di+dj : Li(X, AN @su(E)) — L} | 5(W,su(E)) ® L | s(W,AT ® su(E)) (5.9)

If the positive number ¢ is small enough, then the ASD operator is Fredholm. Moreover, index(D4)
depends only on the path p. Therefore, we define index(p) to be the index of the operator D 4.

If (W, ¢) satisfies Condition 5.3 and A is an ASD connection representing a regular element of
M, (W, ¢; av), then the based moduli space /Wp,a(W, ¢; «v) is a smooth manifold in a neighborhood of
[A] whose dimension is equal to index(D4) + h(«). If (W,c) satisfies Condition 5.7 and A is an
ASD connection representing a regular element of M, (W, ¢;T) for a face I" of AY;,_;, then the based
moduli space /\7p7r(W, ¢;T") is a smooth manifold in a neighborhood of [ A] whose dimension is equal to
index(D4) + h®(a) + dim(I") where o denotes an element of T.

Moduli Spaces for a Family of Metrics

We can form moduli spaces of ASD connections with respect to a family of metrics on a 4-manifold.
Suppose (W, ¢) is a pair satisfying Condition 5.3. Suppose we are also given a family of smooth metrics
on W parametrized by a smooth manifold K. That is to say, W := W' x K admits a metric on each
fiber W+ x {g} which varies smoothly with respect to g € K. For a path p along (W, ¢), we define the
moduli space of ASD connections with respect to this family of metrics to be the following subspace of
B,(W,c) x K:

My(W,¢) = | ] My(W, ¢;9) (5.10)

geK
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where M, (W, ¢; g) denotes the moduli space M (W, c¢) defined with respect to the metric g. A similar
construction can be used to define framed moduli spaces MP(W, c). We say ([A],g) € M,(W,c)isa
regular element of M,,(W, ¢) if the linearization of Fj;” (4) as a map from LZ sXA'@su(E) @ TyK
to L? | s(X,A"T ® su(E)) is surjective. Note that this condition is weaker than [A] being a regular
element of My (W, ¢; g). If the latter property holds, we say M, (W, ¢) is fiberwise regular at ([A], g).
The definition of M,,(W, ¢) can be adapted to the pairs satisfying Condition 5.7 and one can form the
moduli spaces M,,(W, ¢; ") for any face I of AY;_;. In this case, the linearization of the ASD equation
will be a map from L? (X, A' ® su(E)) ® T, T & T,K to L} | s(X, AT @ su(E)). We say an element
([4], g) is a regular element of the moduli space if this map is sﬁrjective.

It is important for our purposes to extend the definition of moduli space of ASD connections to
families of metrics containing broken metrics. Suppose W is a family of metrics on a smooth 4-manifold
W parametrized by an admissible polyhedron K. Let also the projection map from W to K be denoted
by m. We assume that c is a 2-cycle on W, which satisfies either Condition 5.3. We also assume that
all components of c are transversal to the cuts in the family of metrics W. In particular, for any cut Y’
of W, the intersection Y n ¢ defines a 1-cycle on Y. We require that the pair (Y,Y n ¢), for any cut Y,
is either admissible or Y is a lens space. We shall define a moduli space M ,,(W, ¢) which is equipped
with a projection map Pr : M,(W,c) — K as in the case of family of smooth metrics. By definition
7~ 1(K°) is a family of smooth metrics parametrized by K°, the interior of K. The subspace (Pr)~1(K°)
of M, (W, c) is defined to be M, (7~ (K °), c) where the latter moduli space is given by (5.10).

Next, we describe the fibers of M,,(W, c) over the interior points of a codimension one face F' of
K. Let Yr be the cut associated to the face F' and vr := Yr n c. Then the complement of a regular
neighborhood of Yz in W has two connected components denoted by W and W;. By our assumption
on admissible polyhedra, the face I has the form Ky x K;. Moreover, 7~!(W) is determined by two
families of metrics W, W1 on Wy, W; parametrized by Ky and K. If m; : W; — K are the projection
maps, then 7, ! (K ZO ) defines a family of smooth metrics on W; and we can form the based moduli space
My, n(W;, ¢;) where ¢; = W; n ¢, p; is a path along (W, ¢;), and ) € R(Yp, vr). We define:

M/p(ﬁ_l(F),C) = U Mpo,n(w_l(Kg)yco) XTIy -/\7171,77(7T_1(Kf)701) (5.11)
neR(YrYr)
po#p1=p

Here po#p; denotes the path along (W, ¢) obtained by gluing the paths pg, p1 along (Wy, co), (W1, c1).
The space in (5.11) is equal to Pr—! (F"), the fibers of M, (W, c) over F = K§ x K. Anelement [Ag, A;]
in (5.11) is regular if Ay is a regular element of Mpo,n(wfl(Kg), ¢p) and A; is a regular element of
/\ﬂ/lme(ﬂfl (K7),c1). The fibers of M, (W, c) over the faces of higher codimensions and the regularity
of elements of these fibers can be defined similarly. The family of metrics over each face of codimension
k is induced by the families of metrics on k + 1 manifolds. Then the moduli space over the interior of the
face is given then by fiber products of based moduli spaces associated to the k& + 1 families of metrics.
We follow the standard approach to define a topology on M,,(W, ¢). (See, for example, [KMO7].) If 7 is
a flat connection on one of the boundary components of IV, the based moduli spaces //\Zp,n(W, ¢) can be
also defined in a similar way.

Let (W, ¢) be a pair satisfying Condition 5.7 and W is a family of metrics on W parametrized by an
admissible polyhedron K. We assume that W satisfies similar conditions as above. In particular, for any
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cut Y in this family, either (Y, Y n ¢) is admissible or Y is a lens space. Then we can follow a similar
approach to defining the moduli spaces M,,(W, ¢;I") and M, (W, ¢; I") for an open face I" of A, .

5.2 ASD Connections on Gibbons-Hawking Spaces

The following proposition in the case of closed 4-manifolds is proved in [AHS78]. Essentially the same
proof, which uses the Weitzenbock formula, can be used to verify this proposition:

Proposition 5.12. Suppose X is a 4-manifold with an ASD asymptotically cylindrical metric which has
positive scalar curvature. Suppose c is a 2-cycle and p is a path along (W, ¢). Then any ASD connection
associated to the triple (X, c, p) is regular. In particular, the based moduli spaces for the triple (X, ¢, p)
are smooth manifolds.

Let X, be a Gibbons-Hawking manifold of type m = (my, ..., m,,) and X,,, be the family of metrics
on X, parametrized by /C,,. This family consists of asymptotically cylindrical metrics. However, it can be
approximated by families of cylindrical metrics. Fix a positive real number 7. Using inductive arguments
as in the proofs of Proposition 4.54 and Theorem 4.56, we can kill the exponentially decaying term on
the subsets (7p,00) x Y of the ends (0,00) x Y and the subsets (—7 + Ty, 7 — Tp) x Y of the necks
(—7,7) x Y that appear in the family. This gives rise to a family of cylindrical metrics which approaches
the original family as T goes to infinity. We still denote the resulting family of metrics with Xy,.

Corollary 5.13. Let ¢ be a 2-cycle on Xy, and p be a path along (Xm, c). Let the restriction of p to
one of the boundary components of Xm be 1. Assume that index(p) < 1 — h%(n). Then any element of
the moduli space /i/lvpm(Xm, c) is fiberwise regular if Ty is large enough. In particular, /me(Xm, c) is
either empty or at least (n — 2)-dimensional for large enough values of Ty.

If p) is small enough, then the moduli space /T/l/pv77 (Xim, ¢) is automatically empty. Therefore, there
are finitely many paths p which are relevant for the above corollary. In particular, we can assume that the
desired large constant T given by the corollary is independent of p.

Proof. For an integer number k, let 7y = k and suppose that there is p such that the moduli space
Mp,n(Xm, ¢) for Ty = k has an element [Ay] which is not fiberwise regular. Suppose also gy, is the
metric on X, with respect to which Ay, is ASD. Since ,, is compact, the metrics g, after passing to a
subsequence, converge to a (possibly broken) asymptotically cylindrical Gibbons-Hawking metric go,
on X,. Firstly, let g5, be a non-broken metric. Then we claim that the connections Ag, up to action of
the gauge group and after passing to a subsequence, are strongly convergent to a connection Ao, on Xy,
which is ASD with respect to g.,. A priori, standard Floer-Uhlenbeck compactness theorems’ imply that
the connections Ay, up to action of the gauge group and after passing to a subsequence, are weakly chain

"These compactness theorems go back to Floer’s original paper on instanton Floer homology [Flo88]. A good reference for
these compactness results is [Don02, Section 5.1]. Although [Flo88, Don02] are mainly concerned with the Lie group U(2),
the compactness theorems there can be adapted to the case of higher rank unitary Lie groups without any change. A concise
review of the results that we use here is given in [DX17, Subsection 6.1]. See [Don02, DX 17] for the definition of weak chain
convergence.
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convergent to a connection on (X, ¢). Here the convergence could be weak because of the bubbling
of instantons and we need to consider chain convergence because part of the energy of connections Ay,
might slide off the ends of X,,,. However, neither of these two phenomena happen as it can be easily
checked using the following observations. Firstly, let ¢ be a path along (X,,, ¢) whose restriction to one
of the boundary components is A and index(p) < h°(\). Then Proposition 5.12 implies that the moduli
space My(Xm, ¢; goo) is empty. Secondly, let A be a non-flat ASD connections on R x L(p, ¢) with
the product metric associated to the round metric on the lens space L(p, q). If A is asymptotic to a flat
connection x on L(p, g), then dim(I"4) < dim(T'y,). Therefore, index(p) = 1 — h%(x). In fact, we can
conclude index(p) = 2 — h%() because of translational symmetry on R x L(p, q).

The connection A, is a regular element of M, (X, ¢; g ) because g is a Gibbons-Hawking metric.
Since the connections Ay are strongly convergent to A, the connection Ay, for large enough values
of k, has to be a regular element of M,,(Xm, ¢; gx). This contradicts our assumption that Ay, is not a
fiberwise regular element of M (X, ¢). In the case that g, is a broken metric, a similar argument as in
the previous paragraph shows that the connections Ay, up to action of the gauge group and after passing to
a subsequence, converge to an element of M, (Xm, ¢; go), i.€., a broken ASD connection. Again, A is
regular because g, is a (broken) Gibbons-Hawking metric. Moreover, regularity of A, implies regularity
of Ay, for large enough values of k. (See, for example, [Don(2, Proposition 3.9].) O

In Subsection 4.5, we constructed a family of asymptotically metrics on cobordisms W,g for any pair
k > j. In particular, we can apply this construction to define W{C in the case that j = 0 and k = 2N + 1.
This family of metrics induces families of metrics Wi on ng forO0 <k <j<2N+1.IfK =k+N+1,
j =7+ N+1and0 < j,j, k, k' < 2N + 1, then an examination of our construction from Subsection
4.5 shows that we can assume ch = W‘Z:/ We also use the above trick for a large value of Ty to turn these
families into families of cylindrical metrics. In fact, we choose 7} large enough, such that Corollary 5.13
holds for families of Gibbons-Hawking metrics on GH components of Wg ~N+1- Form now on, when we
work with the family of metrics WY, we implicitly assume that 0 < j, j', k, k¥’ < 2N + 1 and the above
modification is applied to W{C

Next, we look more closely at moduli spaces on the Gibbon-Hawking manifold where n = 2 and
(mg, my, mg) are given as below:

(i—1,4,i+1) (i + N,i,i+1) (i+N,i,i+N—1)

These manifolds appear as GH components in the families of metrics W,ﬂ . They have three boundary
components. In the first case, the only non-trivial boundary component is RP3. In the other two cases,
the 4-manifolds have two non-trivial boundary components which are L(NV,1) and L(1 — N, 1).

Proposition 5.14. Let the 2-cycle c on Xy, have the form jodg + j101 + j202:
(i) Let (mg,m1,mg) = (i —1,4,i+ 1). Consider the 2-cycle © = jodo + (jo — j1 + jo)01 + j202. Then

¢ and € induce the same cycle ~y on the boundary component RP3. Let o be a flat connection on
(RP3, 7). Then there is a path p based at & on (X, €) such that the moduli spaces My, o (X, ¢; @)

and Mg o(Xm, G; ) are diffeomorphic to each other.
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(ii) Let (mg,mi,ma) = (i + N,i,i + 1) or (i + N,i,i + N — 1). Suppose « is a flat connection
on L(1 — N, 1) or the trivial boundary component of Xy,. Suppose also o is the following flat
connection on L(N,1):

o =10(@® -V
Suppose p is a path whose restrictions to L(1 — N,1), L(N,1) are , &' and index(p) =
—dim(I'y). Then the 0-dimensional moduli space Mp,a(Xm, c;a, ) is empty.

Proof. Complex conjugation, as an involution on su(/N), maps p to a path p along (X, ¢). This map
induces a diffeomorphism at the level of moduli spaces. The claim in (ii) is also obvious, because the
stabilizer of any element of M,,(Xy, ¢) is a subset of I',,. On the other hand, dim(I'y,) > dim(I'y/).

Therefore, the moduli space ./\7p7a (Xm, ¢; a, @) is either empty or its dimension is at least dim(T',) —
dim(Fa/). O

5.3 Completely Reducible ASD Connections on X (/)

In this subsection, we study a special family of ASD connections on Xy (1). Before we take up this task,

we gather some notations which will be used throughout the rest of the paper. Let v = (x1,...,zxN) be a
vector in RN, Then for 1 < p < o0, the [P norm of v is defined as:
N 1
p )L
V|p 1= x| P l1<p<w V| = max {|z;
vy i= | 2 <p [v]eo := max {[ai]}
1=

We also introduce the following notation:

N
[v]+ = Z x;

Recall that t denote the space of all vectors v € RY with [v] . = 0. There is a standard map from R to
t which maps a vector v as above to the vector:

[v]+ [v]+ [v]+

vi=v—( NN N )
The vector v is called the normalization of v. The space t can be also identified with the standard Cartan
subalgebra of su(N) by mapping a vector w = (y1,...,yn) € t to a diagonal matrix whose i*" diagonal

entry is equal to 2miy;.

We shall also work with a special family of vectors in RY. For0 <i < N — 1:
Ai=(0,...,0,1,...,1) (5.15)
—
N—i i
Then the normalization of ); is equal to:
— i T N—1q N —1

Ai=(—=, ..., —— e

) ( Na 9 ]\E’ N 9 ) N )

~~

~
N—1 1

(5.16)

.

The vertices of the simplex Aﬁv_l in Subsection 5.1 are given by the vectors Aoy ooy AN_q in (5.16).
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Completely Reducible Connections

Suppose X is a negative-definite 4-manifold with an asymptotically cylindrical end modeled on a 3-
manifold Y. A Hermitian line bundle L on X supports an ASD connection, whose curvature has finite
L? norm, if and only if the restriction of ¢;(L) to Y is a torsion element of H?(Y,Z). The space of all
such ASD connections, up to isomorphism, forms a torus of dimension b (X). In particular, this ASD
connection, up to isomorphism, is unique in the case that H; (Y, R) is trivial. By taking the direct sum of
such abelian ASD connections, we can produce higher rank ASD connections. Any such ASD connection
is called a completely reducible connection. The primary concern of this subsection is to study completely
reducible U(N)-connections on the negative definite manifold X (/) equipped with the family of metrics
from Section 4.

Recall that we introduced cohomology classes ey, . .., e on Xy (1) in Subsection 3.1, which generate
the group of cohomology classes in H?(Xy(I), Z) whose restriction to the boundary is torsion. For
1 < j < k, suppose L; is a Hermitian line bundle on X (1) whose first Chern class is given by:

ijey +ises + - +if en. (5.17)
It is convenient to introduce a vector v; € Z" and a k-tuple of vectors defined as below:
v = (v1,v2,...,U).

We also assume that [v;]4 is a non-negative integer numbers less than N. Since e; + - -+ + ey is the
a cohomology class of X (1), we can always subtract a multiple of this vector from v; to ensure this
assumption holds. Fix a metric g on X () with asymptotically cylindrical ends and let B;(g) be the
unique ASD connection on L. This connection also determines flat connections (;(g) and ; on the non-
trivial boundary components S' x S2 and L(N, 1). The flat U(1)-connection X; is uniquely determined
by the first Chern class of the underlying bundle which is equal to [v;] times the standard generator. On
the other hand, the flat connection (3;(g) depends on the metric g.

Let By, (g) be the completely reducible ASD U(k)-connection given as the direct sum of the con-
nections Bj(g). We also define ¢, to be the 2-cycle associated to By(g). The connections By (g) for
different choices of the metric g have different central parts. To avoid this, we fix a U(1)-connection
Ap on X () associated to the 2-cycle c¢,. For simplicity, we can assume that the restriction of Ay on
the end corresponding to S' x S? is trivial. By adding a central 1-form to EV (g), we can define a new
completely reducible connection By, (g) whose central part is equal to Ay. We will write 5y (g) and xv
for the restriction of the connection By (g) to S* x S% and L(N, 1). Note that h°(3y(g)) = h*(Bv(g))
by the Kiinneth formula.

Lemma 5.18. For By(g) chosen as above:

index(Dp,(g) = Y, loi—vli— >, [oids = [vls] = °0w) = R°(Bul9)  (5.19)

I<i,j<k I<i,j<k

Moreover, index(Dp, () = —h°(xv) — h°(Bv(g)) and the equality holds if and only if the vectors v;,
possibly after a permutation of indices, satisfy the following relations:

V1 = Uy = = U |v; — vjlo < 1. (5.20)
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Here v > u for two vectors u,v € RY, if each component of v is not less than the corresponding
component of u.

Proof. According to the index formula:

index(Dis ) + H(B ) + W0 (xv) = 4k - n(4) — (2 — LA LGN D), | W0) + o)

K21 k=1+%,_ h%0u —x5) + p(xi — x;)
+
2 2
Here p(xv) is the p-invariant of the flat connection ad x, which is defined on a vector bundle of rank
N2 — 1 [APS75b]. Itis straightforward to check that:

=4k - k(A) —

1
dhen(A) = 3 fi—vBB-5 X (il —[]4) (5.21)
1<i,j<k 1<ij<k
Moreover, the following relation for the U(1)-connection ¢/, with |j| < N, is proved in [APS75b]:
. . L 442
hO(C7) + p(¢7) = 2 — 45| + N

Here p and hY are defined with respect to the 2-dimensional real representation of U(1). The formula for
the index of By (g) is a consequence of these relations.

In order to verify the second part of lemma, note that we have the following inequalities:
2
DUl = [wilel < D) v — w5 DUlvi—vih < ) v — 53
1<i,j<k 1<i,j<k 1<i,j<k 1<i,j<k

In the first inequality, equality holds if and only if the first condition in (5.20) is satisfied. In the second
one, equality holds if and only if the second condition in (5.20) is satisfied. O

We make the following elementary observation about the vectors that satisfy (5.20):

Lemma 5.22. Suppose the vectors v, . .., vy satisfy the conditions in (5.20) and:
v +v2 A+ F U = (81,...,Sk)
where 0 < s; <k — 1. Then v, = (i},...,ilV) with:
ij _ 1 l < Sj
! 0 I> Sj

In particular, |vj|1 is equal to the number of s;’s which are greater than or equal to [.

From now on, we assume that £ = N. Let [ be a non-negative integer number which is not greater
than V. Let:
o:[N—1] - [N] 7:[l] = [N] (5.23)

be two injective maps. For any choice of o and 7 as above, let w, - be a 2-cycle representing the following
cohomology class:

o0)er+---+o(N—-Il—1env_i+7(0)en_j41+ -+ 7 —1)en (5.24)
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Proposition 5.25. For a metric g on Xy (1), the U(N )-bundle associated to w, » supports a completely
reducible connection By (g) with:

index(Dg, () = —h°(x) — h(B) x=1l®oco o (5.26)

if and only if the image of the maps o and T are disjoint.

Proof. Lemmas 5.18 and 5.22 imply that all the entries of the vector v; are equal to either 0 or 1. Then
the second condition in (5.26) imply that the vectors vy, ..., vy is given by the rows of the following
matrix after a permutation of its columns:

00 00
00 0 1
00 L1 (5.27)
o1 ... 11
Therefore, the set {o(0),...,0(N —1—1),7(0),...,7(I—1)}isequal to {0, 1, ..., N —1}. This implies
one direction of the proposition. The other direction is straightforward. O

A pair (o, 7) of two injective maps as in (5.23) with disjoint images is called a bi-permutation of
type [ associated to the set [IV]. For a bi-permutation (o, 7) of type [ and any metric g on X () with
cylindrical ends, Proposition 5.25 asserts that there is a completely reducible ASD connection B, - (g)
on X (1) such that the associated 2-cycle is w, - and the limiting flat connection of By, -(g) on the lens
space end is equal to x in (5.26).

Fix a reference bi-permutation (o, 79), and let S, [V]\S denote the image of the maps o, 79. Let
Sy, be the symmetric group on the set {1, ..., n}. Given any element (f,g) € Sy_; x S;, we can form
the bi-permutation (o ¢, 74) of type [ which is defined as:

op(i)=oo(fTHi+1)—=1) 1) =7l G+ 1) ie[N—1],je[l] (528)

This gives a transitive and faithful action of Sy _; x S; on the set of all bi-permutations (o, 7) of type [
such that image(c) = S and image(7) = [N]\S.

Remark 5.29. Let X y be the result of gluing S x D3 to Xy (1) along the boundary component S x S2.
The cohomology group H?(X y,Z) is generated by ey, - - - , en modulo the relation e + - - - 4+ ey = 0.

Given a cylindrical metric g on X  and a vector:
N
v = (’Uly"' ,’Uk),UZ‘ eZ )

we can form a completely reducible ASD U(k)-connection By (g). Let xy denote the limiting flat
connection of By (g) on L(N,1). A similar argument as in the proof of Lemma 5.18 can be used to show
that:

index(Dp, () = 2, loi=vili= 3 lvide =[]l = h°(xv) (5.30)

1<ij<k 1<ij<k
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We will need this index formula and the following variant of Lemma 5.22 in the final section of the paper.

Suppose a flat U(V)-connection xy = (¥ @---@ (*N on L(N, 1) is given such that 0 < s; < N — 1.
Analogous to Lemma 5.22, we define v; = (if, .. .,i") as follows:

Z.j: 1 l<8j
! 0l>8j

Let By(g) be the flat connection associated to v = (v1,--- ,vy). Then By(g) has the limiting flat
connection x and index(Dg, () = —h%(x). Let B1 ® - - - ® By be the decomposition of By (g) into
U(1)-connections. Then for any subset {i1,--- ,ix} < {1,---, N}, we have:

indeX(DBil@---@Bik) = —ho(cil DD Clk)

Holonomy Maps

In Subsection 5.2, for any 0 < [ < N, we fix a family of metrics W}, on W/, 5., which is
parametrized by the associahedron KCpr12. One of the cuts associated to this family of metrics is equal to
M ll +N+1- The complement of a neighborhood of this cut has two connected components, one of which is
identified with X ({). In particular, the family of metrics W!_ ;. | induces a family of metrics on X ({)
parametrized by K1 which we denote by Xy (7).

Any g € K1 gives rise to a (possibly broken) metric on X (1), which we also denote by g. Consider
the completely reducible connection B, - (g) for a fixed choice of a bi-permutation (o, 7) of type I. Let
the decomposition of B, -(g) as a direct sum of U(1)-connections be given as follows:

Byr(9) = Bi,(9)® - ® B, (9) (5.31)

where the U(1)-connection B2 , (g) is asymptotic to ¢/~ on the lens space end of X (). The connection
By +(g) is asymptotic to an SU(N)-flat connection 3, ,(g) on S* x S? because we pick the central
connection A such that its restriction to S x S? is trivial. The decomposition (5.31) implies that the
holonomy of 3, -(g) along the S! factor comes with a preferred choice of diagonalization. Therefore,
this holonomy determines a map hol, - : K1 — T where T is the standard maximal torus of SU(V).
It is clear that the map hol, , is smooth in the interior of Ky 1. Standard gluing theory results about
(abelian) ASD connections also show that this map is continuous.

There is a canonical way to lift the map hol, » : Kn41 — 7' to a map lglgﬁ : Kni1 — tsuch that

hol, » = exp o};:)#la;. Recall that we introduced a cylinder ¢ in Subsection 3.1 such that d¢ = vy LU —yN
where g (respectively, yy) is a fiber of the U(1)-fibrations of S* x S? (respectively, L(N, 1)) with
the standard orientation. Gauss-Bonet Theorem and our convention on the orientation of ¢ implies that
B?, -(g) is asymptotic to a connection on S' x S? with holonomy exp(6;(g)) where 6;(g) is given by:

03() =2 [ Py 0 (5:32)

Let ©, - (g) be the vector whose 4™ entry is given by (5.32). Then we define:

ﬁaa,f (9) = Oo,r (9)
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Remark 5.33. To be more precise, we pick ¢ such that its intersection with the ends corresponding to
St x S? and L(N, 1) are cylindrical. Moreover, if Y is a cut of the family of metrics Xy (1), we also
require that in the the regular neighborhood of Y the cylinder ¢ has the cylindrical form corresponding to
a fixed loopin Y.

Proposition 5.34. The map lrflglgﬁ : K1 — tfactors through the forgetful map § : Kny1 — An_1.
That is to say, there is a map H(LT : An—1 — tsuch that hol, ; = HUJ of.

We call hol, , the reduced holonomy map associated to the bi-permutation (o, 7). The proof of
Proposition 5.34 is based on the following elementary lemma:

Lemma 5.35. Suppose X is a 4-manifold such that each connected component of its boundary is a
rational homology sphere. Suppose Y is an oriented surface with boundary which is properly embedded
in X. Suppose X and X are given by adding cylindrical ends to X and Y. Suppose L is a Hermitian
line bundle on X . Suppose « is a flat connection on L| x+\x Which is pull-back of a connection on Lis,.
Suppose A is a connection on L which is exponentially asymptotic to « on the ends of X . Then:

1
ZEEFM) (5.36)

is independent of the choice of the connection A and is equal to c1(L)[X].

A priori, [¥] € Ha(X,0X). Since H1(0X,Q) = H2(0X,Q) = 0, the relative homology class ¥
has a unique lift to H5(X, Q) and the pairing ¢; (L)[X] is well-defined as a rational number.

Proof. This lemma is trivial in the case that X is a closed Riemann surface. We can reduce the general
case to this special case. Using the assumption on 0.X, we can find a closed oriented surface S and a
continuous family of smooth maps ¢, : Y — X fort € R* such that it satisfies the following properties.
For each t define:

Yi(t) := ¢ (60X x [t x 0)) Yo(t) := ¢y H(XT\(0X x [t x ©0))).

The map ¢; is required to have a bounded C'! norm on X1 (¢). There also exists M, independent of ¢,

such that the map ¢; is M to 1 on X5(t). Moreover, the homology class (¢;)+([X]) is a lift of the relative
homology class M [X]. Then we have:

1 \ o
| Fe) =35 i [ orF(a) = 2micy (D)=

The above lemma can be generalized in an obvious was to the case that the metric on X T is broken.

Proof of Proposition 5.34. It suffices to show that if g1, go € K41 are two elements in the same fiber of
the map 3§, then they are mapped to the same element of t by ﬁglg,f. Since g1 and g9 belong to the same
fibers of §, there is a decomposition:

Xn(l) =WH#yZ
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such that S' x S? is a boundary component of 1, all boundary components of Z (including Y) are
rational homology spheres, and g1, g2 determine broken metrics of X (I) compatible with the above
decomposition that agree with each other on W. (See Figure 8.) Note that the metric induced by g1 and
g2 on Z might be broken. In the definition of hol(, +(91) and holg +(92), the integrals S F(B):(q1)) and
§ F Bfm (g92)) have contributions from W and Z. The contributions from Z are equal to each other by
Lemma 5.35 (or by the extension of Lemma 5.35 to the case of broken metrics). Moreover, the restrictions
of B?,} (¢91) and Bg; (g2) to W agree with each other. Therefore, the contributions from W to the integrals
are also equal. O

Proposition 5.37. Let k be a positive integer number not greater than N. Let (o, T) be a bi-permutation of
type l. Then the holonomy map hol, - : An_1 — t maps each face of the simplex A N_1 with dimension
k — 1 into an affine subspace of t with dimension k — 1.

Proof. Fix a face A’ of Ax_1 with dimension k — 1. Then there are k + 1 positive integer numbers 1,
., 1% such that:
io+--+ir=N+1

and A’ parametrizes the arrangements of N + 1 points, denoted by ¢; < g2 < -+ < gy 41 in R which
satisfy the following property for each 0 < 5 < k:
(:IM]'+1 = (IMj+2 == qu+ij

where M; = ig + 141 + - - - +j_1. As before, two arrangements are equivalent to each other if one of them
is mapped to the other one by an affine map. Let jg be the smallest non-negative integer number that:

19+ + o+ ij, >N =L

The face A’ determines a cut of X () with at most k£ + 1 connected components. The connected
components of X (1) after removing this cut can be written as the union of a 4-manifold W and Z. (See
Figure 8.) The 4-manifold WV is connected and has S' x S? as one of its boundary components. The
4-manifold Z is the union of the remaining connected components. In particular, all of its boundary
components are rational homology sphere. The boundary of W' is equal to:

W= <]_[ —L(z'j,1)> UL(N +1—ij)uS! x §2

J#Jjo

Gluing W to Z along the boundary components of 1/, which are non-trivial lens spaces, produces X (7).

Suppose f; is the restriction of the cohomology class e; € H?(Xy(l),Z) to W. Then for each
0<j<k:
fMj+1 = fM+2 == fMj-l—ij (538)

where M; = ig + 41 + -+ + ;1. We denote the common value of these cohomology classes by fj
These cohomology classes satisfy the following relations:

fio =0 iofo+irfi + - +infi = 0. (5.39)
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Figure 8: This schematic figure shows a decomposition of Xo(4) associated to an element of a face of
dimension 3 in Ag. In this example, ig = 4, 91 = 3, io0 = 1 and i3 = 2. The outer region sketches the
4-manifolds W. Two instances of cohomology classes e;, two instances of cohomology classes ﬁ and the
cylinder ¢ are also sketched in this figure.

The second identity holds because the sum of the cohomology classes e; vanishes.

Each element of A’ determines a metric with cylindrical ends on W. In particular, we can consider
the ASD connection A; on the Hermitian line bundle L; with ¢;(L;) = f;. For each g € A"

a;(g) = jw F(A;)

We shall show that each component of HUJ can be expressed affinely in terms of a;’s with universal
constants. The relationships in (5.39) gives rise to similar relations for a; (g). In light of that, we can
conclude that hol, (A’) lives in a (k — 1)-dimensional affine subspace of t.

In order to prove the above claim, it suffices to show that:

| rEs ) = | FELa) [ FE)

c W nZ

can be written affinely in terms of a;’s. Clearly, the first term in the right hand side of the above identity is
a linear expression in terms of a;’s because the first Chern class of the carrying line bundle of B -(g)|c~w
is a linear combination of the classes fN‘] By Lemma 5.35, the second term in the right hand side of the
above identity is also independent of the connection BZ},T (9)]c~z and is determined by the topology of
the corresponding line bundle. The isomorphism class of this line bundle is determined by (o, 7) and is
independent of g. (Note that the connection B} -(g)|c~z is not even well-defined because g € A’ does
not fix any metric on Z.) O

The method of the proof of the above proposition can be used to determine explicitly the subspace
containing the image of each face of Ay _1. In particular, the image of each vertex can be characterized
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explicitly. This task is addressed in the next proposition. We denote the vertices of Ay _; with wuy for
0 < k < N — 1. Identifying A _1 with the weak compactification of P 1, we assume that the vertex
uy, corresponds to the arrangement of (N + 1) points ¢y, . .., gy+1 such that:

a1 = " =4N—-k AN—k+1 = " = gN+1-

As in the proof of the above proposition, each vertex also determines a decomposition of X (1) to two
4-manifolds W, Z and a metric on W.

Proposition 5.40. Suppose (o, 7) is a bi-permutation of type l. Then:

- 1 .
holy 7 (u) = m()\a(o) + o) o Ag(N—k—1)) (5.41)

and: )
holg - (uy) = 7 (Aro1—wy T Aropy + o+ Araon)) (5.42)

where 0 < k' <l <k<N-—1.

Proof. The image of the vertex uy, with respect to the map hol,, , is determined by the following expres-
sion: ) ) )

— | F(B! = — F(B: — F(B!

o . ( a,‘r(uk)) i - ( U,T(uk)> + i sz ( U,T(uk>)
The number jy, defined in the proof of Proposition 5.37 is equal to 1 or 0 depending on whether k > [ or
k <. The first integral in the left hand side of the above expression vanishes because the carrying bundle
of B -(uy) has vanishing ¢; in W, and hence B} -(g) is flat. In order to compute the second integral, we
shall compute the difference §_ , F(BS - (ux)) —§_., F(B3(u)). By Lemma 5.35, this difference is

equal to the paring of the restriction of the cohomology classes e;; and PD(c) to Z where:

. o N —j+1)+1 N —j + 1 € image(o)
Il 7 YN -j+1)+N—1+1 N—j+1¢€image(r)

Assume that k > [, N — k > i; as in Figure 9. Let also Z; be the connected component of Z which has a
the lens space L(V, 1) as one of its connected components. Then we can write:

fz ei; W PD(c) = le ei; W PD(c)

= J eij ) eij
VAl

— eivueiv+f e;. U e;.
LN(U T v T

1 1
I(—N‘Fl)—(—N_kJrl)

Here SX a, for an oriented 4-manifold X and o € H*(X,0X, Q), denotes the pairing of o and the
generator of Hy(X,0X, Q). The second equality above holds because the restriction of PD(c) and —e;;
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Figure 9: Decomposition of Xg(4) associated to the vertex us of Asg.

to Z; are equal to each other. The last equality is the consequence of applying Lemma 3.5. Similar
arguments can be used to show that:

1 1
NoE TN k=1, N—k>
: . —L k=1, N— k<z
F(BJ _(uy —J F(BL M uy, N - J (5.43)
| rwiwn~ | Pt w) - A o
s -% k<lLN-k<

Next, for each vertex uj, of Ax_1, we compute the vector O - (uy,) associated to the bi-permutation
(o, 7), which is defined in (5.32) . Firstly let k£ > [. The first entry of this vector is equal to zero. The
first case of (5.43) shows thatif i; < N — K, then jth entry of O, ,(uy) is obtained by adding ﬁ to
the (5 — 1) entry. Otherwise, these two entries are equal to each other by the second case of (5.43).
Therefore, for k > {:

1

Og,r(ur) = N k()‘o(O) + o)+ F A (vk—1)) (5.44)
Similarly, for &’ < [, we can show that:
1
OO0 r(up) = 7= (Ar—1-r) + Ar—p) + - + A1) (5.45)
K +1
An immediate consequence of (5.44) and (5.45) is the claim in (5.41). ]

In the next part, we describe some standard simplicial decompositions of A _1, called bi-barycentric
subdivisions. Such decompositions are relevant to our discussion because the reduced holonomy maps
hol,. -, which are initially defined for each bi-permutation separately, glue together in a natural way
according to bi-barycentric subdivisions.
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Bi-barycentric Subdivision and Holonomy Maps

Suppose Ay is an arbitrary (N — 1)-dimensional simplex in a Euclidean spaces whose vertices are
denoted by vy, ..., vy. Then any point in this simplex has the form of r1vy + rovg + - - - + ryvy With:

rm+--4+ry=1 r;, =0 (5.46)

This coordinate system identifies the simplex with the standard simplex which consists of the points
(r1,...,rn) € RY that satisfy (5.46). The barycentric subdivision of Ay _1 is obtained by cutting Ay _1
with all planes r; = r;. This subdivision has cells A{V_l, indexed by permutations f € Sy, which are cut
out by a series of inequalities:

TH) ZTEER) = Z TN
It is clear that every such cell is a simplex. The vertices of this simplex are given by:

1
st tuw) 1< ksN

The barycentric subdivision of a simplex also has an interpretation in terms of the moduli spaces of
points on a real line. The simplex Ay _; can be identified with the space of all (N + 1)-tuple of points as
follows:

q0,q1,---,q9N € R, q < qi (5.47)

where at least one of the above inequalities is strict and two arrangements are equivalent to each other if
they are related by an affine transformation. This identification is given by:

qi — 4o
N
Di1(q — qo)

Each permutation f € Sy determines an ordering as follows:

T, =

o < qf1) S 0 S GF(N)

The moduli space of points satisfying the above ordering forms one of the cells in the barycentric
subdivision of Ax_;. Therefore, any such cell can be identified with the week compactification of Py 41
in a natural way.

For any 0 < | < N, the bi-barycentric subdivision of type | of a simplex Ay _1 is defined in a similar
way. Label the vertices of Ay_1 as ui, ..., uy—_, v}, ..., ujand let (ri,...,"N_s,51,...,5) € RN

denote the coordinate of a typical point of A _1. Then the bi-barycentric subdivision has cells A%fi for
each (f,g) € Sny—; x S;, which are cut out by two series of inequalities:

Tra) = ZTHN-1) Sg(1) Z 11 Z Sg(l)

)

Again, it is clear that every such cell is a simplex. In fact, A%fl is the convex hull of the simplices

A{vf ;1 X 0and 0 x AJ . In particular, its vertices are given by:
1 1, ,
o) e tugy) S kS NS TS ke <
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Figure 10: Two bi-barycentric subdivisions of Ao

As long as both [ and N — [ are nonzero, it follows that the bi-barycentric subdivision of type [ is the join
of the barycentric subdivisions of Ax_; 1 and A;_1. When [ or N — [ is equal to 0, the bi-barycentric
subdivision of type [ is just the ordinary barycentric subdivision of Ay _1. In the case N = 3, the two
subdivisions of A _1 is demonstrated in Figure 10.

We can give a description of bi-barycentric subdivision in terms of moduli spaces of points. Suppose
A _1 is identified with the space of all arrangements of N + 1 points o1, ..., 0n_, P, q1, ---, @ in R
such that:

01,...,ON_] <D< I1,...,q (5.48)

and not all the above points are equal to each other. Moreover, two arrangements are equivalent to each
other if they are related by an affine transformation. This identification is given by:

. p—oi . g —p
i = SN I i T SN 7
et (p—o0i) +25_1(q —p) et (P —0i) + 21 (qi — )

Any pair of permutations (f, g) € Sy_; x S; determines an ordering of the points as follows:

0f(1) S S Op(N-1) SP S Gg(1) S 70 S Gy (5:49)

The moduli space of points satisfying the above ordering forms one of the cells in the bi-barycentric
subdivision of type [ of A _1 which we denote by A{\’,{ 1

Suppose (09, 79) is a bi-permutation of type [ as in (5.23) such that their images are given by the
subsets S and [IV]\S of [NV]. Identify the simplex Ay_; with the moduli points as in (5.48). Then
any cell of the bi-barycentric subdivision of type [ of Ay_1 is determined by a pair of permutations
(f,g9) € Sn—1 x S;. Moreover, we can associate a bi-permutation (o ¢, 7,) of type [ to (f, g) as in (5.28)
such that images of o and 7,4 are also equal to S and [N]\S. Identify Ax_; with the arrangements of
points as in (5.48). If a point x = (01, ...,0;,p,q1,- - ., qm) of this simplex satisfies the inequalities in
(5.49), then define:

holg(x) := holy, -, (x) (5.50)

Proposition 5.51. The map holg is a well-defined map from An_1 to t

Proof. We need to show that the maps hol,, 1.7, agree on the overlaps of the simplices Af\’,g_ 1 An (N +1)-

tuple x = (01,...,0N—1,P,q1,---,q) belongs to more than one cell A{\}g_l, if some of its entries are
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equal to each other. For simplicity, we assume that these numbers satisfy the following order:

Ol SON- I SPSQ S Sq (5.52)
Then (01, ...,01,p,q1,--.,qm) belongs to A%fdl. We will write xq for this element of A%fdl. If some
of the inequalities in (5.52) are equalities, then (o01,...,0N_7,D,q1,--.,q) determines elements of

other cells of the bi-barycentric subdivision of Ax_;. To avoid cumbersome notations, we consider
a special case which includes the subtleties of the general case. We assume that p = g1 = g2. Then
(01,...,0N—1,P,q1,---,qi) gives rise to an element x; of A%’_gl where g is the permutation of the set [/]
that interchanges 1 and 2. The assocaited bi-permutations to x( and x; are equal to (o, 79) and (o9, 7).

Analogous to the proof of Proposition 5.34, the arrangements x( and x; determine a decomposition of
Xn(1) as Wty Z where Y = L(N — 2, 1), the non-trivial boundary components of W are S' x S? and
L(N —2,1), and the non-trivial boundary components of Z are —L(N —2,1) and L(N, 1). The elements
X and x; also give rise to the same metric g with cylindrical ends on W. The difference between xg
and x is that they determine different 2-cycles in X (). Nevertheless, the restrictions of these 2-cycles
to W agree with each other. Furthermore, there is a diffeomorphism of Z which maps the cohomology
classes of the 2-cycles determined by x( and x; to each other, maps the homology class of the cylinder
¢ n Z toitself, and is equal to the identity map on the boundary. Thus, we can argue as in the proof of
Proposition 5.34 to show that holy, - (x0) = holy -, (x1). O

We can compose the map holg with the exponential map to obtain a map whose target is the (N — 1)-
dimensional torus 7" in SU(N). We compose the resulting map with the quotient map from 7' to
T/W =~ AY,_, to obtain holg : Ay_; — AY,_,. We shall show that holg has degree one in an
appropriate sense.

Proposition 5.53. There is amap Hg : [0,1] x Ay_1 — AY,_| such that Hg(0,-) : Ay_1 — AY,_,
is an affine isomorphisms of simplices and

Hg(1,-) = holg.
Moreover, there is an open dense subset Ag of AY;_, such that if Hs(t,z) € Ag, then Hg(t, x) is smooth

at the point (t, x).

Proof. Proposition 5.40 asserts that holg maps the vertices of A y_; bijectively to the vertices of A§V_1.
Let Hy be the affine isomorphism from Ay_; to A%, _; whose restriction to the vertices agrees with the

map holg. Define Hg : [0,1] x Ay_; — A%, _; to be the composition of the map:
Hg(t,:) :=t-holg + (1 — t)Hy.

with the projection map from t to A%, ;. We can also pick Ag to be the open cells in the bi-barycentric
subdivision of A%, _; corresponding to (S, T"). This choice of Ag satisfies our desired property because
Hg maps the cells of dimension at most N — 2 in the bi-barycentric subdivision of Ay _1 to the cells of
dimension at most N — 2 in the bi-barycentric subdivision of A¢ by Propositions 5.37 and 5.40. O
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Regularity of Connections on X v (/)

Let p be the path along (X n (1), w, ) represented by completely reducible connections. Up to this point,
we only study the subset of M, (Xy (1), w,, -, AY,_;) given by completely reducible connections. It
would be desirable for our purposes to guarantee that, possibly after a perturbation, these completely
reducible connections are regular and there is no other connection in M, (Xy (1), we , AY;_;). However,
we can only achieve the following weaker result under the assumption that N < 4. Essentially, this is the
only place in the proof of the main theorem that we need to assume that N < 4. Proof of Proposition 5.54
is deferred until Subsection 7.6.

Proposition 5.54. Suppose N < 4, c is an arbitrary 2-cycle in X n(1). Suppose M is a finite subset of
AR,O_l. There exists an arbitrary small perturbation of the ASD equation over Xy (1) such that for any
path p along (X, c), with limiting flat connections x and By on L(N, 1) and S* x S?, we have:

(i) ifindex(p) < —h%(Bo) — h°(x0), then the moduli space M, (Xn (1), c; Ak, _,) is empty;

(ii) ifindex(p) = —h°(Bo) — h%(x0), then any element of M,(Xn (1), c; M) is a completely reducible
connection associated to an element of Ky, ;.

Moreover; there exists a neighborhood V of M such that V < Ak,o_l and M,(Xn(1),¢; V) is compact.

6 Floer Homology and Surgery N-gon

The proof of the main theorem of the paper is given in this section. In Subsection 6.1, we review
general properties of U(/N)-instanton Floer homology for N-admissible pairs. The new ingredient of this
subsection is the extension of the definition of cobordism maps to the case of cobordisms with middle
ends. We formulate a more detailed statement of Theorem 1.6 in Subsection 6.2. This theorem will be
proved in Subsection 6.3.

6.1 SU(N)-instanton Floer Homology

Given an N-admissible pair (Y, ), the instanton Floer homology IY (Y, 7) is defined in [KM11]. In the
present article, we only consider the instanton Floer homology groups with coefficients in Z/2Z. The
Z/2Z-vector space 12 (Y, ) is the homology of a chain complex (¢ (Y, ), d). We firstly perturb the
Chern-Simons functional such that the set of critical points R(Y, ) are non-degenerate. Then a basis
for the chain group € (Y, ) is given by the elements of R(Y,~) which is necessarily a finite set. The
differential d is defined by counting the solutions of the (perturbed) ASD equation on R x Y with respect
to a product metric. To be a bit more detailed, the solutions to the downward gradient flow equation of the
(perturbed) Chern-Simons functional can be identified with the solutions of a (perturbed) ASD equation
on R x Y. Let p be a path along ([0, 1] x Y, [0, 1] x ) whose restrictions to {0} x Y, {1} x Y are
equal to o, B € R(Y, ). Letalso M,(R x Y, R x 7, a, 3)® denote the solutions of the (perturbed) ASD

8The notation M, ([0, 1] x Y, [0, 1] x ~, @, B) is more compatible with Section 5.1. However, we pick this notation to make
it more clear that there is an R-action on the moduli space.
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equation associated to the path p. The perturbation of the Chern-Simons functional can be chosen such
that all elements of the moduli spaces M, (R x Y,R x v, «, ) are regular. There is an R-action on
My(R x Y, R X v, , B) induced by translations along the R factor in R x Y. This action is free unless
p is the trivial path. We will write MP(R x Y, R x 7, a, B) for the quotient of M,(R x Y, R x v, «, 3)
with respect to this action. Then d(«) for « € R(Y, ) is defined as:

da) = Y. #MyRxY,a,8) 8

pra—f

In the above expression and in the following # M for a manifold M is equal to the number of elements
in M, mod 2, if this manifold is 0-dimensional, and is equal to zero otherwise.

Instanton Floer homology is functorial with respect to cobordisms. We need to extend this functoriality
to cobordisms which have middle ends diffeomorphic to lens spaces. Let (W, ¢) be a cobordism from
an N-admissible pair (Y, ) to another N-admissible pair (Y, ~") with middle end (L(p, ¢), ). Let also
n € R(L(p,q),\). We also fix a Riemannian metric on W such that the metric on the end associated to
the lens space L(p, ¢) is induced by the round metric. We can use the following proposition to define a
cobordism map I (W, ¢, 1)) associated to the pair (W, ¢) and the flat connection 1.

Proposition 6.1. Suppose €Y (Y,~) and €& (Y',~') are Floer chain complexes associated to (Y,~) and
(Y',~') after fixing Riemannian metrics and appropriate perturbations of the Chern-Simons functional.
There is a perturbation of the ASD equation on (W, c) such that all moduli spaces My(W, c; o, 1, B)
consist of regular points, where «, 3 are generators of €Y (Y, ), €N (Y’,~') and p is a path along (W, c)
whose restrictions to (Y,v), (Y',~') and (L(p, q), \) are respectively equal to c, 3 and 1. Furthermore,
the map €Y (W, c,n) : €N (Y,~v) — ¢N(Y',~') defined as below is a well-defined chain map:

Y (We,n) (@) := Y #Mp(W,c;a,m, B) - B. (6.2)
p

where the sum is over all paths p whose restrictions to (Y,v), (Y',~') and (L(p, q), \) are respectively
equal to a, B and .

Proof. Since (Y,~) is N-admissible, R(Y,~) (defined by a small perturbation of the Chern-Simons
functional) consists of irreducible connections. This allows us to choose the perturbation of the ASD
equation on (W, ¢) such that all moduli spaces My, (W, ¢; a,n, ) are regular. (See [KM11] or Subsection
7.2.) In particular, we can assume that all moduli spaces M, (W, c; «,n,3) are smooth manifolds.
Note that Floer-Uhlenbeck compactness implies that O-dimensional moduli spaces M, (W, ¢; a, 1), 3) are
compact. Therefore, (6.2) is a well-defined map.

Let p be chosen such that this moduli space is 1-dimensional. Then standard compactness and gluing
theory results imply that this 1-manifold can be compactified and its boundary can be identified with the
union of the following O-dimensional spaces:

U My (R X Y, R x y;0, @) x My, (W, ¢;0 1, B), (6.3)

o/€R(Yy)
P=Ppo#p1
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Moo (W, c;a,m, B') x Mp, (R x YR x~; 8, ), (6.4)
B'eR(Y' )
P=Dpo#Pp1

v

U Mp(Woca0, 8) xr, My, (R x L(p, ), R x X7, m). (6.5)

n'eR(L(p,q),\)
P=Po#Pp1

Here Mpl,n’(R x L(p,q),R x A;n',n) is the quotient of Mm,n’(R x L(p,q),R x A;n',n) by the
R-action induced by translations. Since the product metric on R x L(p, ¢) is induced by the round metric

on the lens space, the moduli space M piy (R X L(p,q), R x A\;n, ) is regular. This space admits an

)

action of I,/ and the orbit of an element of M piy (R X L(p,q), R x A;7,n) represented by an ASD
connection A is I,y /I" 4. Since the connection 7’ can be decomposed into a direct sum of 1-dimensional
flat connections, the orbit I, /T 4 is at least 1-dimensional unless p; is the trivial path. The action of Ly
on Mpo (W, ¢;a, 1), B) is free because the elements of My, (W, ¢; o, 7', 8) are all irreducible. Therefore,
one cannot form 0-dimensional spaces in (6.5), which implies that (6.5) is empty. Counting the elements
in (6.3) for all possible choices of 3 gives rise to €Y (W, ¢, 1) o d(«). Similarly, counting the elements in
(6.4) for all possible choices of 3 gives rise to d o €Y (W, ¢,n) (). This implies that:

CN(W,e,n)od+do (W, e,n) =0.
O

Remark 6.6. Proposition 6.1 can be easily extended to the case that the middle end is a union of lens spaces.
We can also adapt the proof of this proposition to show that the chain homotopy type of €Y (W, ¢, n) is
independent of the perturbations of the ASD equation and the chosen metric on W as long as the metric
on the lens space end is induced by the round metric. Similarly, we can show that the chain map I
associated to the composition of cobordisms with lens space middle ends is equal to the composition
of the cobordism maps. In the special case that L(p, q) = S3, we can fill the middle end of (W, ¢) by
a 4-ball to form a standard cobordism (W, @). The maps €% (W, ¢, ©) and €% (W, €) are homotopic to
each other where O is the trivial connection.

The above proposition can be generalized to the case that a family of metrics on W is fixed. Suppose
W is a family of metrics on W parametrized by an N-admissible polyhedron K. We will write 7 for the
projection map from W to K. Suppose a 2-cycle ¢ is given as above such that (W, ¢) is a cobordism of
N-admissible pairs with the middle end (L(p, ¢), A) as above. Suppose also all connected components of
c are transversal to the cuts of the family of metrics W. We assume W satisfies the following condition:

Condition 6.7. For any cut Y of the family W either (Y,Y n ¢) is N-admissible or Y is a lens space.

Fix n € R(L(p,q),A). We can form the moduli spaces M,(W,c, a,n, 3) with the projection map
Pr: M,(W,c,a,n,8) — K forany o € R(Y,v), 8 € R(Y’',~) and path p along (W, ¢).

Definition 6.8. We call a perturbation good if all elements of M,(W,c, a,n, ) are regular for any
a € R(Y,~), 8 € R(Y',7') and path p along (W, ¢) such that index(p) < 1 — dim(K).
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Suppose a good perturbation for the family of metrics W is fixed. Then Floer-Uhlenbeck compactness
implies that the O-dimensional moduli spaces are compact. Therefore, we can define a map fx from
eN(Y,v) to € (Y, +) in the following way:

fK(OZ) = Z #MP(W7 ¢ a,, B) ' B (69)
p

where the sum is over all paths p whose restrictions to (Y, ), (Y’,~) and (L(p, q), \) are respectively
equal to «, 5 and n. The map fx is not necessarily a chain map anymore. However, its failure to be a
chain map can be examined by the argument in the proof of Proposition 6.1.

Let p be a path along (W, ¢) such that the moduli space M, (W, ¢) is 1-dimensional, i.e., index(p) +
dim(K) = 1. Standard gluing theory and compactness results’ can be employed to show that the
1-dimensional manifold M, (W, ¢; &, 1, ) can be compactified by adding following 0-manifolds:

lJ MpRxY,Rxv0,0/) x My, (W, 0,1, B), (6.10)

o/€R(Yyy)
P=Ppo#p1

U Mp(W.cia,m, ) x My, (R x Y/, R x 5§, 5), 6.11)
BIGR(Y/”Y/)
p=po#p1

My(@W, c;a,m, B) := | Mp(r ™ (F), 50,1, B) (6.12)
F

A priori, there is a contribution to the boundary similar to the spaces in (6.5). However, the same
argument as in the proof of of Proposition 6.1 shows that this contribution is empty. The union in (6.12)
is over all codimension 1 faces F of K. We can use the moduli spaces in (6.12) to define linear maps
fr:eN(Y,y) - ¢ (Y',~") as follows:

fr(a) =Y #My(x " (F),c;a,n, B) - B (6.13)
p

We also define fsi to be the sum of all maps fr.

There is a special case that the map fr can be simplified further. Let Y be the cut associated to F' and
~vF := ¢ Yp. We assume that the pair (Yr, yp) is N-admissible. Furthermore, removing a neighborhood
of Y from W produces two 4-manifolds Wy, W7y, which give rise to the following cobordisms:

L(p.g) A
(Wo,co) : (Y, 7) SEY

(Yr,vr) (Wi, e1) s (Yr,vF)

Y', 7)) (6.14)

where ¢; = W; n c. The restriction of the family of metrics W to the face F induces families of metrics
Wo, W1 on Wy, Wi parametrized by Ky, K. By definition we have:

Mp(ﬂ_l(F)vc;aa7775) = U MPO(W()acO;aa?%f) X Mpl(WhCl;g,ﬂ) (615)

§eR(YFrYF)
P=Dpo#p1

°See, for example, [Don02, Chapters 4 and 5].
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The families Wy and W give rise to maps:
iy = € (Y, ) = & (Ye, vr) frey 1 €Y (Yp,yp) = €3 (Y',)

Moreover, (6.15) for all choices of 5 implies that fr = fx, o fx,. We can obtain a similar description
for fr if removing a neighborhood of Yr from W produces the following cobordisms:

(L(p,q);))

(Wo, co) = (Y,7) (Yr,vr) (Wi, e1) s (Yr,vF) (Y',9") (6.16)

If a cut Yr induces a decomposition as in (6.14) or (6.16), then we say that Yz is an upright cut. This
discussion can be easily extended to the case that the middle end is a union of lens spaces.

Example 6.17. The vertical cuts of the family of metrics Wi/, are upright.

Our discussion about the map fx can be summarized as follows:

Proposition 6.18. The map fi satisfies the following homotopy relation:

do fx + fxod = fak. (6.19)

The homomorphism [ is the sum of the maps fr. Moreover, if Y is an upright cut, then fr = [, o fk,
where the homomorphisms fr, and f, are defined by the restriction of W to the face F' as above.

The Floer homology group 12 (Y, ) admits a relative Z/4N-grading denoted by deg. To define
this Z /4N Z-grading, let o and o be two generators of €2 (Y, ~). We consider an arbitrary path on
([0,1] x Y,[0,1] x ) such that the restriction of p to {i} x Y is equal to o; fori = 0, 1. If Ais a
connection representing p then deg(c) — deg(a1) = index(D4). The relative grading deg can be lifted
to an absolute Z/2Z-grading following the method used in [KMO07, Section 25.4]:

Proposition 6.20. There is a Z/2-absolute grading on Iiv which lifts deg and is uniquely characterized
by the following properties:

(i) The degree of a map induced by a cobordism (W, c) : (Y,~) — (Y',~') is determined by the parity
of-
_N?-1

(W) 5

(X(W) + (W) + bo(Y") + b1 (Y') = bo(Y) — b1(Y))

(ii) The grading is normalized such that the generator of 1Y (&) := Z,/27Z has degree 0.

Remark 6.21. In the case that N is odd, the homomorphisms induced by cobordisms (W, ¢) : (Y,v) —
(Y',~") have always degree 0 with respect to the absolute Z/2Z-grading. When N is odd, the absolute
grading can be also lifted to a Z /4.
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6.2 Statement of the Main Theorem

As in Section 3, let ) be a 3-manifold with torus boundary and « be a 1-cycle in the interior of ). For any
subset S < [N] with j elements, we defined a pair (Y}, vs). We assume that (), y) are chosen such that
all pairs (Y}, ~vg) are N-admissible. For example, it suffices to have a closed oriented embedded surface
Y in Y such that 3 - 7y is coprime to /N. Therefore, this construction associates an N-admissible pair to
each vertex of the directed graph Gy, defined in Subsection 2.2. If S < [N] and 7 ¢ S, then there is an
edge g, in Gy connecting S to S L1 {i}. In Section 3, we assigned the following cobordism to this edge:

: (M]1,1s.0)
(W,yoesq) : (Vs) —25 (Vi) (6.22)
There is also one edge in G from [N] to . The corresponding cobordism of pairs for this edge is the

following: N
(MN+1 3 l5)

(WR1,¢8) : (Yo, va) (Yo, 7g) (6.23)

We can also construct a cobordism for each path ¢ in Gy by composing the cobordisms associated to
the edges of ¢. For a set S — [N] with j elements and an injection map o : [k] — [IN]\S, let ¢ be the
path of length k assigned to the pair (S, o). The cobordism associated to this path is:

Hocich1 (M1 Lsio(ti) o)

(Wi, es.0) ¢ (Y, 7s) (Yisks Ysuo(i4)) (6.24)

We also labeled paths ¢ containing the edge ¢ with a pair of injection maps ¢ : [k] — [N] and
7 : [I] — [IN] whose images are disjoint. This path starts from .S = [N]\Imo, ends at 7" = Im 7 and
has length k£ + [ + 1. The cobordism assigned to this path is equal to:

N ki
Ho<ichrt(My =310 1)

(Wf]\mil’covf)  (YN—k,75) (Yi,v7) (6.25)
where
Iso([il)o () when0 <i <k —1;
li=qls when ¢ = k;

lT([i—k—l]),T(i—k—l) whenk +1<i<k+1.

Previously we fixed Riemannian metrics on 3-manifolds Y and families of metrics W?ﬁ on cobordisms
W,ﬁ compatible with the Riemannian metrics on the 3-manifolds Y;. We fix a small perturbation of the
Chern-Simons functional of the pair (Y}, ~g) for each set S with j elements such that the Floer chain
complex €Y (Y}, ~s) is well-defined.

Theorem 6.26. For each path q in G from a vertex S < [N] to another vertex T < [N | with length at
most N + 1, there is a map f : @iv(}ﬁs‘,’ys) — @iV(Yuﬂ‘,'yT) such that ({Civ(Y‘gwyg)}, {fq}) forms an
exact N-cube. Let v denote a generator of the kernel of the map H1(0Y) — Hi(Y). Let S < [N] with j
elements, o : [k] — [N]\S and q be the path associated to the pair (S, o). If N is odd, then the degree
of the map f, with respect to the Z/2Z-grading is equal to k — 1. If N is odd, then the degree of the map
fq with respect to the Z /2Z-grading is equal to k — 1 + Zf;:;jjﬂ el where ) is defined in (1.11).

Note that Corollary 1.9 is a consequence of the second part of the above theorem and Corollary 2.7.
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6.3 Proof of the Main Theorem

In this subsection, we use the families of metrics (Wﬁ 41 CS,0) and (W%;f 1> Co,r) On the pairs (6.24)
and (6.25) to define maps f, as in Section 2. For any two subsets .S, T" of [IV], we can then define ffq
to be the sum of all maps f, where ¢ is a path from S to 7" in G . We shall also check the following

identities, which verify Theorem 6.26:

dff + fpd=>. fffR,  ifSET; 6.27)
SCRCT
dff + fd =Y fffa,  if|T|<|S|and S # T; (6.28)
SSR
or RCT
dff + fd =1+ > fffR, ifS=T (6.29)
SSR
or RST

Maps f, for paths of length at most N

Let S and 7" be subsets of [N] such that S ¢ T Let |S| = j, |T'| = k. Letalso o : [k — j] - T\Sbea
bijection. Then the cobordism of pairs (ng, ¢s,), defined in (6.24), satisfies Condition 5.3. Moreover,

the pair (W{c, ¢s,») satisfies Condition 6.7. All middle ends of the cobordism W,g are 3-dimensional
spheres. To any such end, we associate the trivial SU(V')-connection and we will write 7 for this choice
of flat connections on the middle ends. In the next section, we shall show that (Wi, s, 1) admits a good

perturbation. Therefore, we can construct a map using the triple (Wi;v S0, 1) asin (6.9). We will write
[, for this map.

Let Wé denote the result of gluing D* to W,g along the middle boundary components. Since the
parametrizing polyhedron of W{C is the associahedron Kj_; 1, the degree of the map fs, is equal to
u(W},) + dim(Ky_j41). Thus, the degree of this map is equal to:

k
1 g 7_
F—j—1+ (V=1 3 S(x(W )+ o)) +bi(Vi) —b(¥)  (630)
I=j+1

In particular, if NV is odd, then (6.30) is equal to k — j — 1. In general, Wiil :Y;_1 — Y is an elementary
cobordism and the term L(Wé_l) in the above sum is equal to 5; [KMO7, Subsection 42.3].

For each open face I’ of K41 with codimension one, we can follow (6.13) to define a map:
fr €Y (Vs vs) = € Yy, vr)-

Firstly let Yp, the cut associated to the face F', be vertical. There is [ such that j < [ < k and the
restriction of the family of metrics W7, to the face F is given by the families of metrics W7, Wi, on the

cobordisms VVZj , W,i Thus Proposition 6.13 asserts that fr is equal to the composition fs 5, © fs.4,
where o1 : [l — j] — [N], 02 : [k — 1] — [IN] and S’ are defined as below:

o1(i) = o(i) o2(i) :==0(i+1—7) S'=Suo;.
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Next, let Y be the spherical cut M,g,, where j < j' < k' < k. Removing a regular neighborhood of
YF has two connected components Wy and W;. We assume that the indices are chosen such that Y} is
one of the boundary components of Wy. Thus W is a Gibbons-Hawking manifold diffeomorphic to X,
where m = (j',j'+ 1,--- , k’). Suppose the restriction of the family of metrics ch to the face I is given
by families of metrics W, W; on Wy, Wj respectively parametrized by the associahedra of dimensions
(k—k)—(j—7), kK —j" —2. Letalso ¢ and ¢; denote the restrictions of cg , to Wy and W;. By the
definition in (6.13):

fra) = D # (Mo (Wo, co50,1, B) xr, My, (Wi, eqsaf) ) - B

B,po,p1,m

where py is a path along (W, ¢p) whose restriction to the boundary components are «, 1" and 3, and p;
is a path along (W7, ¢1) whose restriction to the boundary components are given by n’. Note that in our
notation we did not specify the flat connections on the boundary components of Wy and W diffeomorphic
to S3. Of course, these flat connections are necessarily trivial connections. The moduli space:

Mo (Wo, o3 0,1, B) X, My, (W1, c157) (6.31)

has contribution in the definition of the map f if it is O-dimensional. Moreover, Mpo (Wo, co; a0, 1, B)
contains only irreducible connections because (W, cg) has two N-admissible ends. Therefore, the
regularity assumption implies that Mpl (W1, c1;1',m) is O-dimensional. On the other hand, Corollary
5.13 asserts that the dimension of this moduli space is at least &’ — j' — 2. Therefore, fF vanishes unless
K =j +2.

If ¥ = j' + 2, then we define 7:

o(j/=j+1) i=j—]
o) =4 o('—J) i=j—-j+1
o(i) otherwise

The pairs (ng ,CS,0) and (W,g , cs,7) have the same /N-admissible ends. If we define ¢y = c¢sz N W, and
¢1 = csz N Wi, then ¢y = ¢o. Moreover, Proposition 5.14 implies that there is a path p; on (W1,¢1)
such that M, (Wy, c1;1') = My, (W1,¢1;1). Therefore, we have:

~

My (Wo, co; a1, B) xr,, My (Wi, ex; ') = Mg (Wo, cos a1, B) xr,, My, (W1, e1;) (632)

Associated to the cut Yz and the bijections o and @, we have two maps fr, which are equal to each other
by (6.32). This observation and Proposition 6.18 shows that the map fi,s , the sum of the maps fs , for all
bijections o : [k — j] — T\, satisfies (6.27).

Next, let S and T be subsets of [ N] such that |S| > |T'|. Let |S| = 4, |T| = k. Leto : [N — j] —
[NV]\S and 7 : [k] — T be two bijections. Then the pair (o, 7) defines a path of length N + 1 — j + k
from o to 7. The pair (W}, v, Co,r) from (6.25) is the cobordism of pairs associated to the pair (o, 7).
This cobordism is a cobordism from (Y}, vs) to (Y, yr) with a middle end. The middle end of this
cobordism is the union of L(N, 1) and N — j + k copies of S>. Let  on the middle end of this cobordism
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be given by the connection 1® ¢ @®---@® ¢~ on L(NV, 1) and the trivial connections on the remaining
boundary components. Following (6.9), we can use the triple (V\V?c +N41> Co,rs 1) to define a map:

Jor: QiV(YISb’VS) - QiV(YITVfYT)'

We can follow the same strategy as above to show that fﬁs , the sum of the maps f, . over all bijections
o: [N —j]— [N]\Sand 7 :[k] — T, satisfies (6.28). The only difference is that we need to replace
part (i) of Proposition 5.14 with part (ii) of the same proposition.

Maps f, for paths of length N + 1

Let S and 7" be subsets of [V] such that |S| = [T'| = 1. Leto : [N =[] - [N\Sand 7 : [l]] = T
be two bijections. Then (o, 7) determines a path of length N + 1 in G. The pair associated to this
path is the cobordism (W}, v 1, ¢s,+) from (Y},7s) to (Y;,y7). The middle end of this cobordism is the
union of L(NV,1) and N spheres. Let 7 be the connection on the middle end of (VVll ' N41> Co,r) induced
by the connection 1 @ (@ --- @ ¢¥~! on L(IV, 1) and trivial connections on the remaining boundary
components. We want to define a map f, - using the 0-dimensional moduli spaces associated to the triple
(Wf +N+1) Cors 7). We also wish to study the map dfy - + f, -d using the 1-dimensional moduli spaces
associated to (W% +N+1) Co,r5 7). However, we cannot use the general results of Subsection 6.1 because
the family Wf +N4+1 has a cut which is diffeomorphic to S 1'% §2. For the rest of this section, we also need
to assume that NV < 4.

Let p be a path along (W}, 1, Co,-) such that index(p) is at most —N + 1. Let also 7 denote the pro-
jection map from Wf LN 0O KCn+2. As in Subsection 5.1, we define a moduli space ./\/lp(Wg SN41 Coyr)
of dimension index(p) + NN together with a projection map Pr : M,, (W% N1 Cor) = Ko Firstly let
F g be the face of ICx,» whose associated cutis S' x S2. Removing a neighborhood of S* x S? produces
a 4-manifold with two connected components. One of these connected components is diffeomorphic to
Xn(1). We denote the other connected component by 1. The restriction of ¢, to Xn({) is equal to
Wg,+, Which is defined in Section 5.3. Let also ¢y denote ¢, N Wj. The topology of the pair (W, co)
can be described as follows. Remove a regular neighborhood of the knot {%} x Kj in the 4-manifold
[0,1] x Y. (Recall that the knot K is the core of the Dehn filling torus.) The resulting manifold is a
cobordism form Y; to Y; with middle end S' x S? and can be identified with W;,. We also have:

1 1
Co = (’YS X [0,5] U yr X [5,1]) GW()

The family of metrics parametrized by the face F is given by a fixed metric on Wy and the family of
metric Xy (1) on X (1). In particular, the face Fq is equal to K 1.

Remark 6.33. In the case that S = T, the above description implies that there is a cut in [0, 1] x V]
diffeomorphic to S* x S2 which decomposes the pair ([0, 1] x Y7, [0, 1] x vs) into the following pairs:

(Wo, co) (S1 X D3,c').

Here ¢} is a multiple of a the cylinder S x y where 7 is a path connecting two points in the boundary of
the 3-ball D3,
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We define:

~

Mp(ﬂ'_l(FO)a CO’,T) = U Mpo,a(W()) €o; a) XTq Mpl,a (XN(Z), We,r; a) (6.34)

po#pg =p
aeAy_4

An element [ A, A;] of this moduli space is regular if it satisfies the following conditions:

(i) The common limiting flat connection of Ag and A; on S x S? lies in Ak,ofl.

(ii) Ao represents a regular element of M, (W, co; AR?A) and A represents a regular element of
Mpl (XN(Z)> Wo,r; AR;)_l)'

(iii) I:Ee maps rg : ./\,>l/p0 (Wo, co; AR,O_I) — AR,O_I in a neighborhood of [Ay] is transversal to r; :
My, (XN (1), wo,r; AR}J_l) — AR,O_l in a neighborhood of [A4].

Let F be any other face of Ko such that F and F are disjoint. We can proceed as in Subsection
5.1 to define M, (7~ (F"), ¢,7) and regularity of connections in this subspace of M, (W}, 1, cor).
The disjoint union of (6.34) and the spaces of the form M, (7~ (F’), ¢, ;) defines Mp(WfJFNH, Coyr)
as a set. A topology on this set is also defined in a standard way.

In Subsection 7.7, it will be shown that we can use a perturbation in the definition of the ASD equation
such that all elements of the moduli spaces M, (W!_ |, ¢5.) are regular in the case that index(p) <
—N + 1. More specifically, we shall show that this perturbation can be chosen such that the moduli space
My(Wi, yi1sCor) is empty if index(p) < —N — 1. In the case that index(p) = —N, the moduli space
is a compact O-manifold which is mapped to the interior of 1o by Pr. If index(p) = —N + 1, then
the moduli space M, (W!_ 1, ¢s.) is a smooth 1-manifold whose boundary is equal to:

L Mp(n ™ (F), or) (6.35)
F

where the sum is over all codimension one faces of 5. For the face Fy corresponding to the cut
St x S2, the subspace M, (771 (Fp), cy.+) is equal to the fiber product:

Mpo (W()a €o; Akfofl) ro Xry M, (XN(Z), wa,’r) (6.36)

where M, (Xn (1), ws,r) is the moduli space of (perturbed) ASD completely reducible connections
with respect to the path p; with index(p;) = —2(N — 1). The perturbation in the definition of
M (XN (1), wo,r) can be made arbitrarily small. The path py is also chosen such that it has the same
limiting flat connection as p on (Y7, vs), (Y7, vr) and its index is equal to —(/N — 1). In particular, Propo-
sition 5.25 implies that the space in (6.36) is empty unless the images of .S and 7" are disjoint. The moduli
space M, (W, co; AR,O_I) is a compact O-dimensional manifold consisting of regular connections. The
maps:
ro s Mg (Wo, co; AR ) — AR, 1t Mo (Xn(1), wo,r) — Ay

are given by restrictions of connections to S' x S$2. We cannot guarantee that M. (X (1), w,, ) consists
of only regular solutions. Nevertheless, any point in r; ' (image(ro)) is regular.
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The moduli space Mp(Wf +N+1>Co,r) can be compactified into a compact 1-manifold by adding the
points in the following space:

|_| Mpo (Y1 x R,7vs x R) x My, (W§+N+1aco,r) (6.37)
po#p1=p
and:
|| My (Wiinicor) x My, (Y7 x R, 55 x R). (6.38)
Po#p1=p

In (6.37), index(pg) = —1 and index(p;) = —N. A similar assumption holds for the paths py and p; in
(6.38).

Let for : €N (Y),7s) — €N(Y},vr) be a map defined as:

fa,r(a) = Z #Mp(W€+N+17 60777047777/8) -8
p

where the sum is over all paths p such that index(D,) = —N and the restriction of p to the incoming,
the outgoing and the middle ends of VVIZ N4 are a, Bandn =1D(D--- B N-1_ Moreover, the
description of the boundary components in the compactification of 1-dimensional moduli spaces gives
rise to the following analogue of Proposition 6.18:

Afor+ ford =) fr (6.39)
F

where the sum on the left hand side of the above identity is over all codimension one faces of K ;2. The
map fr is defined as in (6.13) by counting the points in the spaces that appear in (6.35). In particular, one
of the terms in (6.39) is fx, in correspondence with the face Fp. To emphasize that this map depends on
the choice of o and 7, we will use the alternative notation fiT to denote this map.

Let fﬁ be the sum of all maps fmT. By arguing as in the previous part, we can show that:

dff + fid="3, ffR+) for
ScR o,T
or RCT
where the second sum in the left hand side of the above identity is over all bijections o : [N —I] — [N]\S
and 7 : [l] - T.

Proposition 6.40. Let S and T be as above. If S # T, then the map fiT vanishes. If S = T, then there
is amap gs : € (Y, vs) — € (Yi,7s) such that:

dgs +gsd =1- Y f,
o,T

where the sum is over all bijections o : [N — 1] — [N]\S and 7 : [I] - S.

This lemma completes the proof of the main theorem. If S # T, then we define f,  to be fg,T. In
the case that S = T', we fix bijections o¢ : [N — ] — [N]\S and 79 : [{] — S and define f,, -, to be
gs + fgo,m; For the remaining choices of bijections o : [N — ] — [N]\S and 7 : [I] — S we define
fo',T to be fo’,T-
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Proof of Proposition 6.40. Let o be a generator of €Y (Y}, v5) and 3 be a generator of €2 (Y}, 7). The
coefficient of 5 in fﬁT(a) is given by counting the elements of the finite set in (6.36). As it is explained
above, this space is empty in the case that S # T. Assume S = T, and let M (a, 3) denote the factor
My (W, co; A%Ll) in (6.36). The limiting value of py on the two admissible ends are «, (3. It is shown
in Subsection 7.7 that we can assume that the map ro : M («, 8) — Ak})_l is transversal to the maps holg
and Hg from Subsection 5.3. This assumption shows that if the perturbation to form the moduli space
M (XN (1), ws,r) is small enough, then the number of points in (6.36) does not change if we replace the
perturbation in the definition of M., (X (1), we ) with the zero perturbation. Therefore, we have:

DS () =# (M (e, B) ryXhols An-1) - B

=# (M(%B) ro X Hs(0,") AN—l) B
=#M (o, B) - B (6.41)

The second equality is the consequence of counting the boundary points of the 1-dimensional manifold
obtained by counting the fiber product of the map ry : M («a, ) — A’R;Ll and the map Hg : [0, 1] x
An_1 — AY,_;. Since Hg(0,-) is an isomorphism of simplices, (6.41) shows that ZU’T fiT is equal to
the map associated to the pair ([0, 1] x Y}, [0, 1] x ~g) corresponding to a broken metric which induces
the decomposition in Remark 6.33. The pair ([0, 1] x Y7, [0, 1] x s) with the standard metric induces
the identity map. Therefore, there is a map gg such that:

dgs +gsd =1- > f,

o, T

7 Perturbations, Regularity and Gluing

The goal of this section of the paper is to put together transversality results used throughout the paper. To
achieve this goal, we use a slightly modified version of the perturbation of the ASD equation in [Kro05].
These perturbations are reviewed in Subsection 7.1. In Subsection 7.2, we discuss regularity of irreducible
connections of moduli spaces for a pair (X, ¢) satisfying either Condition 5.3 or Condition 5.7. The case
of reducible connections is significantly more subtle and in Subsections 7.3 and 7.4, we prove some partial
results in this direction. Perturbations of the ASD equation for a family of cylindrical metrics is discussed
in Subsection 7.5. The final two subsections are devoted to applications of our general transversality
results to pairs (X, ¢) which are of interest to us. In this section, to abbreviate our notation, we write
Q) 5(X, su(E)) or Q§(X, su(E)) for the Banach space L 5(X, A’ ® su(E)) and so on.

7.1 Holonomy Perturbations

Suppose X is a 4-manifold with boundary. In [Kro05], a Banach space W is constructed where each
element w € W introduces a perturbation of the ASD equation over X . The definition of WV depends on
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the choice of a family {B;, ¢;, C; };cz Where Z is a countable infinite set, B; is an embedded ball in X T,
g; is amap from B; x S Tto X" and Cjis a positive constant number. For each x € B;, we use g; ;, to
denote the loop ;]| (z}x51- Moreover, this collection is required to satisfy the following conditions:

(i) The map g; is a submersion.
(i) ¢i(1,z) = z forall z € B;.

(iii) The constants C; are growing “sufficiently fast”. (See [Kro05, Sections 3 and 5] for a more accurate
condition.)

(iv) For every z € X the following set is C''-dense in the space of loops based at :
y g P P

{¢die i€, xe B;}.

Define
J = {(i,j) e T xIli # j, Bij = Bi 0 Bj # &}

For (Z,]) e J, let qij: B; n Bj x S — X, qi,j|{:p}><Sl be given as:

R . —1 —1
Qij = Gie * iz * 4 o ¥4,

where * denotes the composition of loops. We also assume that a family of constants {C; ;}; j)e7 i
fixed such that they satisfy the analogue of Condition (iii) above. The Banach space W is the space of all
sequences of self-dual 2-forms w = {w; }ie7 U {w; ;}jes such thatw; € 02(B;, C), Wi j € O%(B;in B;,C)
and the following expression is finite:

i Cilwilem + > Cijlwijlom (7.1)
€l (i,)eT

Here m > 3 is a fixed integer number. Let ¢ be a 2-cycle on X and p be a path along (X, ¢). Suppose
also E is the U(/NV)-bundle on X associated to c¢. Given w € WV, we can define amap V,, : A,(X,c) —
QT (X, su(E)).

Vo(4) = > m(wf ®Holg, (4)) + ). w(w]; ®Holy, ;(A)) (7.2)
€L (4,5)eT

where w;" and w;'; are the self-dual parts of w; and w; j, Holy, (A)(x) € SU(E;) is the holonomy of A
along the loop ¢;(-, #) and 7 is the orthogonal projection from gl(E) to su(£)'°.

Suppose (X, ¢) is a pair satisfying (5.3) and p is a path along (X, ¢). Recall that when we form the
moduli space M,,(X, ¢), we initially might need to perturb the ASD equation as in (5.5). This primary
perturbation is induced by perturbations of the Chern-Simons functional for each admissible end of (X, ¢)
such that the perturbed Chern-Simons functional has only non-degenerate critical points. Throughout

0ur Banach space of perturbations is different from that of [Kro05] in two ways. Here elements of W are sequences of
2-forms rather than ASD 2-forms. This variation is more suitable when we consider the moduli spaces associated to families of
metrics. Secondly, the terms w;, ; do not exist in the definition of W in [Kro05].
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this section, by an abuse of notation, we will write F; (A) = 0 for the perturbed equation (5.5). Given
w € W, we can define a secondary perturbation and consider the equation F," (4) + V,,(A) = 0. In order
to be more specific about the secondary perturbation w, we will write /\/l;j(X , ¢) for the solutions of the
equation F (A) + V,,(A) = 0. We use a similar convention for the other moduli spaces which were
constructed in Subsection 5.1.

7.2 Regularity of Irreducible Connections

Proposition 7.3. Suppose (X, c) is a pair satisfying Condition 5.3. Suppose X is a family of smooth
metrics on X with cylindrical ends parametrized by a smooth manifold K. Then there is a residual subset
Wheg of W such that for any perturbation w € Wieg the irreducible elements of moduli space M) (X, 0),
denoted by My (X, ¢), consists of regular connections for any choice of p.

Proof. Let £ be the Banach bundle over A, (X, c¢) x K whose fiber over the metric (4, g) € K is the
space Q;g (su(E)). The action of the gauge group lifts to £. By taking the quotient, we obtain a Banach

bundle over B,(X, ¢) x K which we also denote by £. We use the same notation for the pull back of £ to
By(X,c) x K x W via the projection. Define ® : B,(X,c) x K x W — & as follows:

(I)([A]vgaw) = F+g(A) + Vw(Aag)

Suppose x = ([A],g,w) is a zero of ® and A is an irreducible connection. Then It is shown in
[Kro05, Lemma 13] that the derivative of the above map at x, as a map from the tangent space of
By(X,c) x K x W to the fiber of £ at x, is surjective. In fact, it is shown there that the derivate of ®
maps T} 418,(X, c) to a closed subspace of £|x with finite codimension and maps WW = T,V to a dense
subspace of £|x. Since we will use a similar argument later, we discuss this in more detail here.

Given any point x € X, the irreducibility of A and Condition (iv) in previous section imply that we
can find ay, - -, a2 € T such that Holy, (A)(x) span gl(E),. Thus, they form a local frame of gl(E)
in a neighborhood U of z. Given any g-self-dual 2-form 7 € Q;g (X, su(F)), supported in U, we can
find 2-forms w,, € Qg(X ), fori = 1,---, N2, which are supported in U and:

N2
n= Y m(wa ®Holy, (4))

i=1
Thus, partition of unity shows that the image of the restriction of the derivative of ® to 7,V contains all

compactly supported g-self-dual 2-forms, which is a dense subspace of £|x.

According to implicit function theorem, the space of irreducible elements in ®1(0) = B,(X, ¢) x
K xW, denoted by M¥ (X, ¢), is a smooth Banach manifold. Moreover, the projection map from M (X, c)
to W is Fredholm. The set of regular values of this projection map, denoted by Wi, is residual by
Sard-Smale theorem. The space W, has the required property claimed in the proposition. O

Remark 7.4. We can consider an alternative space of perturbations. In Proposition 7.3, we use perturbations
which are constant within the family of metrics. Suppose a family of cylindrical metrics on X parametrized
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by a manifold K is given. Let W be the space of maps from K to V. Then each element & € w
determines a perturbation of the ASD equation which is given as follows:

Fy*(A) + Vi) (A, 9) = 0

Such perturbations will be essential for us when we consider the ASD equation for a family of possibly
broken metrics.

Later, we will need a relative version of Proposition 7.3. Suppose (X, c) and X are given as in
Proposition 7.3. Suppose also J is an open subset of K and H is a compact subspace of .J. We also fix
functions 7o and 71 such that 7o is supported in J, 71 is supported in the complement of H, and o = 1
when 7; = 0. Assume that & € W is also given such that the moduli space M (X, c) is regular over
J, i.e., the moduli space M;’m" (X] s, ¢) is a regular moduli space, We wish to replace & with another
element @’ such that the restrictions of &’ and @ to H are equal to each other and the total moduli space
M;"DI(X, c) is regular:

Proposition 7.5. Given & as above, there is a residual subset Weg of VW such that for any perturbation

W € Wheg, the following element of w defines a regular moduli space over K:

& = Yl + mw.

Proof. The proof is similar to the proof of Proposition 7.3. Define a map ® : B,(X,c) x K x W — £ in
the following way:
O([A],g,w) = Fy *(A) +%0Va(4,9) + nVu(4, g)

Let x = ([A],g,w) be a zero of ®. If 7;(g) # 0, then the same argument as before shows that the
derivative of ® is surjective at x. In the case that v, (g) = 0, the point g belongs to .J, and the assumption
about & implies that x is a regular point of the map ®. Now we can proceed as in the proof of Proposition
7.3 to construct Weg. O

Proposition 7.6. Suppose (X, c) is a pair satisfying Condition 5.7. Suppose X is a family of smooth
metrics on X parametrized by a smooth manifold K. Then there is a residual set Weg < VW such that
M;’w (X, ¢ I), for w € Wheg, consists of regular connections for any choice of an open face I of A§V—1
and a path p along (X, c). Moreover, for any element i of a finite set I, suppose a smooth map ¢; from a
smooth manifold M; to an open face 1'; of AS\,_I is given. We can also assume that for any i € I and
W € Wheg, the map r : My¥(X,¢;T;) — T is transversal to the map ;.

Proof. The proof is similar to the proof of Propositions 7.3. We can define a map ¢ : B,(X, ¢;I") x K x
W — & x I'. Suppose x = ([A], g,w) is such that A is an irreducible connection and ®(x) = (0, 3).
Then we can consider:

Dy® : Ty By(X, ¢, T) x TyK x W — |5 x Tyl

Then the space Dx®(Tj)B,(X,¢,I')) is a closed subspace of &|x x TsI" with finite codimension.
Furthermore, the projection of this space to TsI" is also surjective. The space Dx®()V) is mapped to
E|x x {0} and is dense in this space. Therefore, {0} x {3} is a regular value of ® for any choice of .
Therefore, we can proceed as before to verify this proposition. O
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We can also state a relative version of Proposition 7.6, similar to Proposition 7.5:

Proposition 7.7. Suppose (X, ¢), the family of metrics X and ¢; are given as in Proposition 7.6. Suppose
also H ¢ J < K, ~g and v1 are given as in Proposition 7.5. Suppose & € W is given such that the
moduli space M;’wb (X7, T) consists of regular solutions for each open face T' of A§V_1, and for

anyi € I, the map r : ./\/l;’wl‘] (X]s,¢ ;) — Ty is transversal to ¢;. Then there is a residual subset

Wiee © W such that for any w € Wieo, the parameterized moduli space over K and associated to the
g y g p 4

following perturbation has similar properties:

o = Yo + Yw.

That is to say, the moduli space ./\/l;’a/ (X, ;') consists of regular solutions for each open face T' of

AJ;Vfl’ and for any i € I, the map r : ./\/l;’wl (X, ;1) — Ty is transversal to ¢;.

Remark 7.8. If (X, ¢) has an admissible end, then all elements of the Banach manifolds B,(X, c) are
irreducible. Therefore, we can use the general results of this section to ensure that the moduli spaces
of interest to us consists of only regular solutions. Moreover, we can assume that the perturbation
term is supported only in the compact part [—1, —%] x 0X of the cylindrical ends [KM11]. (See also
[KMO7, Section 24].) In this case, Propositions 7.3, 7.5, 7.6 and 7.7 can be proved even if we restrict our
attention to holonomy perturbations which are supported in [—1, —%] x 0X.

In the case that (X, ¢) does not have any admissible end, then the moduli spaces of ASD connections
might have reducible elements. Therefore, the results of this subsection cannot be used to achieve
regularity. Nevertheless, we shall prove some partial results about the regularity of reducible elements of
moduli spaces in the next two subsections.

7.3 Regularity of Completely Reducible Connections

Suppose X is a 4-manifold with boundary such that by (X) = b (X) = 0. We fix a cylindrical metric on
X. Suppose L1, ..., Ly are U(1)-bundles on X, and E denotes the U(N)-bundle L; & - - - @ L,,. For
simplicity, we assume that the U(1)-bundles are mutually non-isomorphic to each other. Let ¢ be a 2-cycle
representing ¢ (E). We assume that (X, ¢) is a pair satisfying Condition 5.7 without any admissible
end. Each of the U(1)-bundles L; admits an ASD connection, that is unique up to isomorphism. For
simplicity, we also assume that the metric on X is chosen such that the limiting flat connection of these
ASD U(1)-connections on S* x S? are different.

If we fix a connection B; on L; which is the pull-back of a flat U(1)-connection on the ends of
X, then By @ --- @ By determines a path p along (X, c). As in Subsection 5.1, we can also use
this connection to define the space B,(X,c). Let B, be the subspace of B,(X,c) represented by
connections A = A; @ --- @ Ay where A; is a connection on L;. For any perturbation term w, let
MY (X,L; ®---@® Ly) be the intersection of the moduli space M (X, c) and B,,.

Proposition 7.9. For a small perturbation w, the moduli space M%.(X, L1 @ --- , Ly) consists of a
single point.

83



Proof. We can form a bundle £ over B whose fiber over the class of a completely reducible connection
A has the form Q (X, RV 1) where for each x € X, RV~ is identified with the subspace of su(L; &
-+ @® Ln)l(y) consisting of the diagonal transformations. We can use the ASD equation on the space of
completely reducible connection to define a section of this bundle. Since b*(X') = 0, this section has a
unique zero which is cut down regularly. By abuse of notation, we will also write £ for the pull-back of
the bundle € to B, x W. The perturbed ASD equations F," (4) + V,,(A) induces a section of the above
bundle. The inverse function theorem implies that there is a neighborhood ¢/ of the unique solution of
the solution of F," (4) = 0 in B such that if w is small enough, then M% (X, L1 ®--- ,Ly) nU has a
unique solution.

Suppose there is a perturbation w;, such that |w;,| < 1 and M%(X,L; @ - -, Ly) has a solution
[ By,] which does not belong to the open set U{. After passing to a subsequence, these connections are
convergent to a connection [ By, ]. Note that Uhlenbeck compactness a priori implies that we could have
bubbles or part of the energy might slid off the ends. However, because B,, are direct sums of abelian
connections, neither of these phenomena happen and the limiting connection is also completely reducible.
Since the convergence is strong, the limiting connection [By,] belongs to the complement of ¢/ and

satisfies the ASD equation which is a contradiction. O

We wish to study the regularity of the moduli space M%.(X,L; @ --- @ Ly ). We assume that the
perturbation w is small enough such that MY (X, L; @ - - - @ Ly) has a unique element represented by
A=A1@® - @ Ap. Let o denote the limiting value of this connection on S L % S2. The decomposition
of E as a direct sum of U(1)-bundles, induces the following decomposition:

suE) =RV 'eP L ® L

1<j

where RV ~! denotes the bundle of trace free diagonal skew-hermitian endomorphisms of E. Since V,, is
an equivariant map under the gauge group action, the ASD complex of the connection A = A; ®---PAn
decomposes into a direct sum of the diagonal part

d*+DVi|, g1

_ d — o
Q%+1,6(X’EN 1) - Ql%;,&(XvEN 1)@TaAR/—1

O (RN (7.10)
and the off-diagonal part:

.
dy 0% Lawar TPVela Lo

15X, Li®LY) O 5(X, L ® LY) O 5(X, Li®LY) (7.11)

where 7, j run through all the pairs that 1 <7 < j < N. Note that (7.10) gives a Kuranishi structure for
the moduli space of completely reducible connections MY (X, L1 ®--- @ Ly).

In the remaining part of this subsection, we regard L; ® L;‘ as a sub-bundle of su(F). This means that

for a given point x € X, we should consider any element of L; ® L |, as a matrix (hy;) with h;; = —hji
and all the other entries zero. The complex structure of L; ® L;-‘ maps (hy;) to a matrix A’ such that
hi; = ihij, h; = —ih;; and all the remaining entries of 1’ are zero.

Definition 7.12. Let A be a connection on £ (not necessarily completely reducible), which represents a
path p along (X, ¢). Let y be a piecewise smooth loop in X with base pointz € X. Leta € T4 A,(X, c) =
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Q}f 5(X,su(E)). By fixing a trivialization of E|,, we can identify holonomy of any connection along ~y
with an element of U(V). (In fact, this holonomy belongs to a the coset g - SU(V) which is independent
of the connection A because elements of A, (X, c¢) have the same central parts.) We define:

dHol, (A + ta
boly (a) := DHol, |a(a) = VElt)

Note that hol 4 ., takes values in the left translation of su(N) by the element Hol, (A) € U(N).

lt=0 (7.13)

We may think of  as a map from [0, 1] to X with v(0) = ~(1). By parallel transport, we obtain a
trivialization of v*(E). Now, 7*a can be regarded as an su(NV)-valued 1-form under this trivialization,
and we have:

holy (a) = —HolW(A)J[ ]7*a € Tiol., (4) U(IV) (7.14)
0,1

In the case that A is a completely reducible connection, we can write an explicit semi-global formula for

holy . (a). Fix a trivialization of L (1 < k < N) in a neighborhood of  such that Ay, can be written as

d + ai with aj, being a 1-form with values in ¢R.. Then we have:

holy ,(a) = —HolW(A)J[ | e3o ai(s)=a;(5)ds o (1) g7 (7.15)
0,1

Proposition 7.16. Fix a base point x € X. Let a be an elements of Q}C s(X,Li® L;‘) Then the following
are equivalent:
(i) there is a O-form b with values in L; ® L;‘-‘ such that:

J
(ii) For any loop y with y(0) = x, we have hol, . (a) = 0.

Proof. Suppose hol . (a) vanishes for any loop . We define b as follows:

bly) := f a= J oc*ae L; ® L}, (7.17)
oY [0,1]

where o is an arbitrary path from z to y. This integral is defined in a similar way as (7.14) using parallel
transport along the path . The expression in (7.17) does not depend on the choice of the path o because
hol4 . a vanishes for any loop v. Now it is easy to see that d4b = a and b(z) = 0. This proves (ii) = ().

Next, let a = d 4, 4+b and y be a loop with (0) = x. We have
vt

boly ,(a) = _HOIV(A)J v a
[0,1]

— Mo dvy*b

= —Hol,(A) f[og] o

= —Hol,(A)(v*b(1) — v*(0))

= —Hol,(4)(Adyel (4)-1(b(z)) — b(x)) (7.18)

Since b(z) = 0, we have holy ., (a) = 0. This proves (i) = (7). O
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Proposition 7.19. Fix a base point x € X and trivialize Ly, at x for all k. For any non-zero form
aeQ (X, L;® LY), there exist loops 1, 72 based at x such that

bo{Am*w*vfl*vg—l(a) # 0

unless a = d g 4+b for a O-form b with values in L; ® L.
v

Proof. Fix a pair of loops 71,2, and let hol = 0. Let H;, Hy denote respectively

Apryaany ey (0)
Hol,, (A), Hol,, (A). With respect to our trivializations, these are two diagonal matrices. We also write
C}, and Dy, for the k' diagonal entries of H; and Hy. We have:

0 = _ho[Am*vz*vfl*El(a)

= f Via+ Hfl(vé"a)HlJrf
[0,1] [0,1]

(Hy Ho) (7Y ar ) HyHy + f Hy (757} a) Ha
[0,1] [0,1]

- f Tiat f Hga) i — | By () H — j va
[0,1] [0,1] [0,1] [0,1]

Therefore, we have:

(D' Dj — 1)J

via = (C;71C; — 1) J Via. (7.20)
[0,1]

[0,1]

Since 71, 2 are arbitrary, (7.20) implies that there is C' € L; ® L;‘-‘

z» independent of v, such that
f vra = C’(Hol;l(Az-) Hol,(A;) — 1)
[0,1]

for any loop « with v(0) = z. Take an arbitrary section s € Q°(X, L; ® L7) with s(x) = C. Then by
(7.18) we know:

J[ | ’Y*dA@A;FS = C(Hol;l(Ai) Hol,(A;) — 1)
0,1
Therefore:
holy,(a—dygars) =0
for any loop ~. Proposition 7.16 implies that there is b such that:
v

O]

Lemma 7.21. Suppose a € Q). s(X,L; ® L;“) is a non-zero I-form such that a is not equal 1o d 4 4+ b
) 4 J

for any O-form b with values in L; ®L;‘. Then for any given compactly supported c € Ql:r—l,é(Xv L;® L;‘),
there are two compactly supported holonomy perturbations wy and wo such that:

o V,,(A)=V,(A) =0

° DVW1|A(CL) + DVW2|A(ia) =c
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Proof. By Proposition 7.19 and our assumptions from Subsection 7.1, for an arbitrary point x € X, there
exist (I, m) € J such that z € B; n By, and hol 1 (a) # 0. There is a neighborhood

Al ¥ Gm o #a) e
U < B; n By, of x such that

ho[A,ql,y*Qm,y*q;; *q;&y (a) #0

forall y e U.

Since ¢ has compact support, we may assume we can find a finite set of triples (U, [y, my) so that the
above property holds and {U}} covers the support of c. Let {py} be a partition of unity of the support of ¢

with respect to the open covering {Uy}. Since pyc € Q* (U, L; ® L¥) and hol, a0,y 50 g (a)isa

section of L; ® L* which is non-zero on Uy, we can obtain a complex-valued ASD 2-form supported in

J
Uy, as follows:
PKC

Nk ‘=
EJU[Amk *qmy, *qfkl*q&}g ()

We take the following perturbation:

w1 A/ — Zﬂ- Re T]k ®HO Ql *qu*ql *qu (A/))
k

Recall 7 is the projection from gl(n) to su(NV). It is easy to check that:

DVi|ala) = Z(Re k) ® ho[A,qzk g, # (a)
k

Similarly, we define:

1 (A7)

1 -
a1y, *qmy, *qlk *qmy,

Vs (A7) 277 Im(n) ® Hol
k

It satisfies:

DVWQ |A(ia) - E(i Im nk) ® []O[A»qlk*qu *ql;l *q’;l}c (a)
k

Therefore, we have:
DV, |a(a) + DV,,|a(ia) = ¢

This proves the second requirement of the lemma. The first requirement is obvious because the holonomy
of A along a commutator of loops is the identity map. 0

Theorem 7.22. Let w be a sufficiently small perturbation such that M%.(X, L1 @ --- , Ly) consists of a
single point A = A1 @ - - - @ AN with limiting flat connection & = a1 @ - - - ® oy on S* x S2. Suppose:

index(d, o axF d} o A;!‘) >0 H(S' x 8%, a; ®af) =0 foralli < j.

Then there is a holonomy perturbation W', arbitrarily close to w such that Mw/(X Li® - ,Ly) =
M (X, L1®- - - , Ly) and the unique point in M. (X, L1®- - - , L) is a regular element ofM‘“ (X,c).
Moreover, w' — w can be chosen to be compactly supported.
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Proof. 1f w is small enough, then Proposition 7.9 allows us to focus only on the off-diagonal part of the
ASD complex, i.e., complexes of the following form:

T
d (@A ) | . dAi®A;!‘ +DV,, . | .
Qk,&(Xv Lz@Lj) Qk_L(s(Xa L1®Lj)

My16(X, Li® L)

If the second map in the complex is not surjective, we want to show that there is a compactly supported
small holonomy perturbation wq such that

b Vwo (A) =0
. d;@A;: + DV, + DV, : coker(dA@A;;:) — Q,‘LM(X, L; ® L}) has a smaller kernel than the
operator dJAf@A* + DV, : coker(dA@A;g) —Qf (X, Li® Ly).
1 J b

If this is true, then by induction we can find a perturbation w’ close to w so that dz oar T DV, is
i®4;

surjective, which verifies our claim.

+ . . . . . . . .
Suppose d A@Ar + DV, in the above complex is not surjection. This assumption and non-negativity

. + . . + .
of 1ndex(dzi A +d e A;?‘) imply that there is an element a € ker(d A@A* + DV,,) such that a is
not equal to dy,g b for any O-form b with values in L; ® L}. Letalso c € QX Li® LY) be
T 7 7
a compactly supported element in coker(dz_ oar T DV,,). By Lemma 7.21, we can find a compactly
45

supported perturbation w; such that

o Vi (A) =Vp(4) =0
e DV, |a(a) + DV,,|a(ia) =c

Either DV,,, |a(a) or DV, | 4(ia) represents a non-zero element in coker(d oax T DV,,). The 1-form
i®4;

ia also belongs to ker(d:@A* + DV,,) and it cannot be written in the form of d 4 g 4+b. If DV, | (a)
T i v J

represents 0 in the cokernel, then we replace a with ia and w; with wy. Therefore, without loss of
generality, we may assume ¢’ = DV, | 4(a) represents a non-zero element in the cokernel.

Now we form a new perturbation wy = ew; where ¢ is a small positive number. If € is small enough,

d;i A% + DViy + €DVi [ en( T5 DV is still an isomorphism into its image and ¢’ does not lie in
i®47

the image of this operator, because ¢’ ¢ Im(dz oax T DV,,). Therefore:
4

+
dA;-@A? + DV, +eDV,, ‘((ker(df " +DV,,))+axa)
J

7

is also injective, which proves that

d;,@A;k + DVW + DVWD . COker(dAi®A;<) — Q"F(X’ L’L ®L;¢)

has a smaller kernel than (d;i A* + DV,,) |COkeT(dAi®A;F)'
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In our application, we will only deal with the case X = Xy (I). Let A be the completely reducible
connection By (g) in Proposition 5.25. Apply Lemma 5.18 to the connection A; @ A;;, it is easy to see
that index(dy o s + dy oar) = 0. If we also suppose the limiting flat connection 3 on S 1 x 82 lies in

14 @4
AR,O_I, then the requirement in Theorem 7.22 is fulfilled and we can apply the theorem to make A regular.

7.4 Partial Regularity

Let p be a path along (X, ¢), and suppose A is a connection representing this path. We fix a base point
x € X andlet hy < Aut( E|,) be the group of the holonomies of A based at x. Identifying the fiber of £
at  with C" gives an N-dimensional representation of 4 4. Irreducible components of this representation
determine a decomposition of E into a direct sum of Hermitian vector bundles as follows:

E=FE®  ®FPFE®  OE®  0E® - FE,
- > - ~

mi m2 ms

For each bundle F; there is a connection A; such that the connection A is equal to the direct sum of the
connections A; (where A; appears with multiplicity m;). Let N; denote the rank of F;. Let ¢; denote a
2-cycle representing c; (E;). The path along (X, ¢;), determined by the connection A;, is also denoted by
p;. We say that A is a connection of type {(IN;, m;, ¢;, p;) }1<i<s- The stabilizer of the connection A of
this type is given by:

Ta={(Vi,...,Vs) | Vi € U(my),det(V))M ... det(Vi) N =1}
We can consider the moduli theory of the space of connections which have the same type as A. Firstly

assume that (X, ¢) satisfies Condition 5.3 and b1 (X) = b*(X) = 0. Suppose A denotes the space of all
s-tuples of connections A = (A, ..., Ay) such that:

e The connection A; is irreducible of rank /V; representing the path p;.
e The isomorphism classes of the connections A; are distinct.

e The central part of the connection:

A=4@0 QACAHLD ©Ad  DAD - DA (7.23)
. ~- - . ~- ~———— ————

mi m2 ms

is given by a fixed U(1)-connection on the determinant of E.

Note that we do not fix the central part of the connections A;. Suppose a family of smooth metrics X on
X parameterized by a manifold K is given. Then we can form a bundle £ over the space A x K whose
fiber over (A, g) is the space:

O (X RTH® P Q9 (X, su(E)). (7.24)

1<i<s
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Analogous to previous subsection, R¥~! should be interpreted as the sub-bundle of su(E) given by scaler
endomorphisms of E;. Then F0+ 7(A) for the connection A in (7.30) can be regarded as an element of the
fiber of £ over (A, g).

There is also a gauge group acting on A and £. An element of this gauge group is an s-tuple
(uq,...,us) where u; is a hermitian automorphism of the bundle F; and:

det(uy)™ - det(uz)™ . . . det(u,)™ = 1. (7.25)

The quotient of A with respect to this gauge group is denoted by B. The bundle £ also induces a bundle
over B x K, which is still denoted by £. The trace free part of ASD connections induce a section ¢ of the
bundle £.

Lemma 7.26. The differential of the section ® at a zero z € B x K defines a Fredholm operator @, from
T.(B x K) to the corresponding fiber E|, whose index is equal to:

index(Da4,) + - -+ + index(Dg4,) + dim(K)

Proof. Without loss of generality, we may assume K consists of a single point. Suppose z = [A1, ..., A]
is a zero of ®. If we deform z while preserving the central parts of A1, ..., A, then the differential of
® takes values in the second summand of (7.24). Fredholmness of the ASD operator implies that this
component of the differential of ® is Fredholm and its index is equal to index(Dy4, ) + - - - + index (D4, ).
If we only deform the central parts of the connections A1, ..., A,, while we preserve the central part of
A in (7.30), then the differential of ® takes values in the first summand of (7.24). This component of the
differential of ® is an isomorphism because b'(X) = b (X) = 0. (This claim is standard and its proof is
implicit in [APS75a]. See also [Dael5].) ]

If the derivative of ® at a zero z € B x K is surjective, then we say z is partially regular. The zeros of
® form the moduli space of reducible ASD connections of type {(N;, m;, ¢;, pi) }1<i<s With respect to the
family of metrics X. We will write M,,(X, {(V;, m;, ¢;, pi) }1<i<s) for this space.

Consider the pull-back of the Banach bundle £ to B x K x W via the projection map and denote this
bundle with &, too. Then ¢ extends to a section of £ defined over 5 x K x W which we also denote by
®. Zero is a regular value of ®. The main ingredient to verify this claim is the following standard result
from representation theory of compact Lie groups. Each element of the holonomy group h 4 determines
an element of U(Ny) x ... U(N;s) < gl(E1) @ - - - @ gl(Es) given by the holonomy of connections A;.
Since the connections A; are irreducible and have different isomorphism classes, the linear combination
of all such matrices, generate the space gl(E1) @ - - - @ gl(Es). Given this result, then we can apply the
argument in the proof of Proposition 7.3 to verify the claim about regularity of zero as a value of ®.

Now, an application of Sard-Smale theorem as in the proof of Proposition 7.3 shows that there is
Wreg © W such that for any w € Wi, the section:

M (X, {(Ni,mi, i, pi) h<ics) == 271(0) 0 (B x K x {w})

consists of regular elements. This argument and Lemma 7.26 allow us to conclude:
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Proposition 7.27. Suppose (X, c) is a pair satisfying Condition 5.3 with b*(X) = b (X) = 0. Suppose
a family of smooth metrics X on (X, ¢) parametrized by a manifold K is fixed. There is a residual subset
Wieg © W such that for any w € Wi.eq and any path p along (X, c), we have:

(i) Any connection [A] € M} (X, c) is partially regular.
(ii) Suppose the decomposition of A as a direct sum of irreducible connections is given as below:

A=40  0ADAD ©DAdD  -DAD DA (7.28)
~/ . ~- —_—

~-
mi ma2 ms

Then we have the following index inequality:
index(Da,) + - - - + index(Dy4. ) + dim(K) = 0. (7.29)
The above proposition can be adapted to the case that (X, ¢) satisfies Condition 5.7 and b; (X) =

bT(X) = 0. As the first step, we need to define the space A. This space consists of all s-tuples of
connections A = (A, ..., Ag) such that:

e The connection A; is irreducible of rank /V; representing the path p;.
e The isomorphism classes of the connections A; are distinct.
e The central part of the connection:

A=40 - QAPAD - DAD - DAD DA (7.30)
N ~ —_

mi mo ms

is given by a fixed U(1)-connection on the determinant of F.

e There is a fixed lift of an open face I of Al to the set of smooth connections on S 1'% $2 such
that the limiting flat connection of A on S* x 52 belong to this space.

We can proceed as before to define a gauge group acting on .4, the quotient space 3, and a Banach bundle
& over B x K whose fiber over (A, g) is given as in (7.24). If A = (Ay,..., A,) then {F} ?(A;)}1<i<s
determines a section of this bundle. The moduli space M ,(X, {(V;, m;, ¢i, i) h1<i<s; I') is defined to be
®~1(0). For any element z = (A, g) of this moduli space, the derivative of ® at z defines a Fredholm
operator whose index is equal to:

S
(Z index(DAi)> + dim(T") + dim(K) — (s — 1)
i=1

We say z is partially regular, if the derivative of ® is Fredholm at z. More generally, we can define the
moduli space M (X, {(N;, mi, ¢i, pi) }1<i<s; I') for any w € W and extend the notion of partial regularity
for the elements of these spaces. The proof of the above formula is similar to the proof of Lemma 7.26.
The first term is given by deforming the connections A; while preserving their central parts and boundary
flat connections on S x S2. The second term is given by deforming the boundary flat connections. The
third term is the contribution of deforming the metric. The final term is also obtained by varying the
central parts of each A; while preserving their boundary values.
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Proposition 7.31. Suppose (X, c) is a pair satisfying Condition 5.7 with b*(X) = b (X) = 0. Suppose
a family of smooth metrics X on (X, c) parametrized by a manifold K is fixed. Suppose also a finite
subset M of AY N_1 IS fixed. There is a residual subset VWyeg < VV such that for any w € W.eq and any
path p along (X, ¢), we have:

(i) Any connection [A] € My (X, ¢; AY, ) is partially regular. In particular; if the decomposition of
A into irreducible connections has the following form:

A=4® QAL QAD - DA;D - @ As, (7.32)
J . ~/ SN—_——
then:
(Z index(DAi)> + N — s +dim(K) > 0. (7.33)
=1

(ii) Suppose [A] € M:(X, c; AJ;Vfl) is an element of M;;’(X, {(Ni,mi,Ci,pi)}lgigs;AR/?_1> and

7([A]) € M. Then the map r : M (X, {(Nl,ml, Cis Di) Hi<i<s; AR}D ) — At’c _, at the point [A]

is transversal to the inclusion map of M in AY N_1- In this case, the inequality in (7.33) can be
improved as follows:

<Z index(DAi)> +1—s+dim(K) > 0. (7.34)

i=1

Proof. The bundle £ and the section ® can be extended to the space B x K x W. The zero is a regular
value of ®. In the case T' = A%’_|, we also define 7 : B x K x W — A}’ using the limiting value

of connections on S x S2. It is also true that for any 3 € A,X;Ll, the pair (0, ) is a regular value of
(D,r) : Bx K xW — & x A;;;)_l. We follow a similar argument as before to verify the claims. O

Proposition 7.35 is the relative version of Proposition 7.31:

Proposition 7.35. Suppose (X, c) is a pair satisfying Condition 5.7 with b*(X) = b* (X) = 0. Suppose
a family of smooth metrics X on (X, ¢) parametrized by a manifold K is fixed. Suppose H c J < K, <, 70

and 1 are given as in Proposition 7.5. Suppose a finite subset M of At ; _, is fixed. Suppose & € W is
given such that the following two properties hold:

(i) Any connection [A] € ./\/lg'" (X, ¢; AY_,) is partially regular.

(ii) Suppose [A] € MyV (X| 1, ¢; AYy_,) is an element of My (X| 5, {(Ni, ms, ¢i,pi) h<izs Afy_y)
and r([A]) € M. Then the map r : M;;'J(Xb, {(Ni,mi,ci,pi)}lgigs;AR;Ll) — A} at the
point [ A] is transversal to the inclusion map of M in AR,O_l.

There is a residual subset Wyeg VW such that for any w € Wieg, if:
&= Yow + yw.

then the following properties hold:
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(i) Any connection [A] € ./\/lg’/ (X, ¢; AY,_,) is partially regular. In particular; if the decomposition of
A into irreducible connections has the following form:

A=A410  DAPA® - DAD DA;D - DA, (7.36)
~~ - ~~ d —_—
mi1 m2 ms
then:
(Z il’ldeX(DAi>> + N —s+dim(K) > 0. (7.37)
i=1

(ii) Suppose [A] € Mg” (X, ¢ AEV—l)N is an element of./\/lg’, (X, {(Ni, mi, ci, pi) hi<iss; Ak ) and
r([A]) € M. Then the map r : M (X, {(Ni, ms, ¢i, pi) }1<i<s; A;ﬁ_l) — AR?_l at the point [ A]
is transversal to the inclusion map of M in AR?_I. In this case, the inequality in (7.33) can be
improved as follows:

<Z index(DAi)> +1—s+dim(K) > 0. (7.38)
i=1

7.5 Perturbations over a Family of Cylindrical Metrics and Gluing

Suppose W is a family of cylindrical metrics on a smooth 4-manifold W parametrized by an admissible
polyhedron K. We write 7 for the projection map from W to K. Suppose c is a 2-cycle on W such that
(W, ¢) satisfies Condition 5.3 or 5.7. If Y is a cut that appears in the family W, then we require that Y’
intersects c transversely and Y is either a lens space, S' x S? or (Y,Y n ¢) is an N-admissible pair. For
each N-admissible pair (Y, ), appearing as a boundary component of (W, ¢) or a cut in the family W, we
fix a perturbation of the Chern-Simons functional such that € (Y, ) is well-defined. This perturbation of
the Chern-Simons functional determines a perturbation of the ASD equation on ((a,b) x Y, (a,b) x 7)
for any interval (a, b). We will write Uy for this perturbation. We wish to explain how we perturb the
ASD equation for the family of metrics W.

Suppose F is a codimension [ face of K and Y7 is the union of [ cuts associated to F'. By definition,
F" has the product form Ky x K7 x --- x K; for admissible polyhedra K;. Let Y1, ..., Y; denote the
connected components of Y. Removing a regular neighborhood of Y from W produces a 4-manifold
with [ 4+ 1 connected components which we denote by Wy, - - -, W;. We also write ¢; for W; n c. As
we explained in Subsection 4.1, the family of metrics parametrized by the subset F' x (1, oo]l of K is
determined by families of smooth metrics W; on the 4-manifolds W; parametrized by K. Suppose w;
is an element of W associated to the family of smooth metrics W;. Recall that this gives a perturbation
W;(g) of the ASD equation for each element g € K7. We assume that there is a positive constant number
Ny such that &;(g) is supported in the following subset of W, 11

N
W; U [0, 70) x OW;.

"In this subsection, we use the cylindrical coordinate ¢ on the ends instead of the coordinate 7.
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We can use w; and the chosen perturbations of the Chern-Simons functionals to define a perturbation
& of the ASD equation over the subspace F' x (Ny, ©]'. If g = (go, ..., q1,51,...,5) € F x (Ng, 0],
the support of &;(g;) can be identified naturally with a subset of the 4-manifold 7~!(g). Moreover, the
support of these perturbation terms are disjoint. Therefore, @Wo(go), - . ., @;(g;) induce a perturbation of
the ASD equation on 7~ !(g) which we denote by @ (g). If (Y;,Y; n ¢) is N-admissible, then we can
consider the perturbation Uy, y;~. on (=%, %) x Y; induced by the perturbation of the Chern-Simons
functional. Let ¢ : R — [0, 1] be a smooth function which is supported in (0, 00) and is equal to 1 on

[1,00). We can extend the following perturbation of the ASD equation on (—%, %) x Y; to 7~ !(g):
Si Si
St +5) -85 = 1) Ui Yine

Let wW(g) denote the summation of all these perturbation for all N-admissible (Y;,Y; n ¢). Then the
perturbation of the ASD equation &i(g) at g € F x (Np, 0]’ is defined to be w(g) + @w(g). We say a
perturbation of the ASD equation for the family of metrics W is admissible, if there is Ny such that the
perturbations over F' x (N, OO]COdim(F ) for each face F of K has the above form. The main feature of
admissible perturbations for us is the following result from gluing theory:

Proposition 7.39. Suppose w is an admissible perturbation for the family of metrics W. Suppose z is an
element of M} (W, ¢) such that Pr(z) belongs to F where F is a face of K with codimension I. Then
there is a neighborhood of z in M} (W, ¢) which contains only regular elements of the moduli space.
Moreover, there is a neighborhood U of z in M (77Y(F),c), a positive real number Ny, and a map
VU x (N, oo]l - My (W, ¢) which is a diffeomorphism into an open neighborhood of z, and for any
(w,s1,...,5) €U x (Ny,0], there is f € F such that:

PI’(\I/(w,SI, e 73l)) = (f7 8515 ;Sl)-

Proof. This proposition is a standard consequence of gluing theory results in the context of Yang-Mills
gauge theory. In the case N = 2, [Don02] is a good reference for these results. The proofs there can be
easily adapted to higher values of V. O

We show the usefulness of Proposition 7.39 in an example. Suppose W is a family of metrics on W
parametrized by an admissible polyhedron K. Suppose c is a 2-cycle on W such that for any 4-manifold
W' that appears in the family W, the pair (W', W' n ¢) has at least one admissible end. We show that
there is an admissible perturbation w for the family of metrics W such that for any oath p along (W, ¢)
with index(p) < 1 — dim(K), the moduli space M (W, ¢) is regular.

Firstly, we show that w can be chosen such that the moduli spaces M, (W, c) are empty if index(p) <
—dim(K). We firstly start with the definition of perturbations for the vertices of K. Suppose F is a
vertex of K, Wy, ..., W are connected components of W\(—1,1) x Y and ¢; = W; n c. The face F’
also determines a metric with cylindrical end on each component W;. For each W;, we use Proposition
7.3 (more precisely, Remark 7.8) to choose a perturbation w; such that the moduli space M’ (Wi, ¢)
is regular for any path p;. Now, suppose p; is a path along (W, ¢;) such that gluing the paths py, ...,
pi gives rise to the path p. Since index(pg) + - - - + index(p;) < — dim(kK), there is a path p; such that
index(p;) is negative. Therefore, the moduli space over F' is empty. We extend the chosen perturbations
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to a neighborhood of each face such that the resulting perturbation is admissible. Proposition 7.39 asserts
that if these neighborhoods are small enough, then the moduli space over these neighborhoods are also
regular. Next, we need to extend the family of metrics over the edges of K. Because we already define the
perturbations of the ASD equation in a neighborhood of vertices, we need to use Proposition 7.5 to extend
the perturbations to the edges. Note that we might need to shrink the neighborhoods around the vertices
of K as aresult of applying this proposition. Another application of Proposition 7.39 shows that we can
extend the perturbations to a neighborhood of the edges. Repeating this argument inductively gives the
desired perturbation for the family of metrics K.

Next, let index(p) = — dim(K). We can use the above argument to construct an admissible per-
turbation in a neighborhood of the boundary of K such that the moduli spaces over this neighborhood
associated to paths, with index not greater than — dim(K), are empty. As the last step, we can use
Proposition 7.5 to define an admissible perturbation over K such that the moduli space is non-empty
only over the complement of a neighborhood of the boundary of K. Then Floer-Uhlenbeck compactness
theorems show that the moduli space M (W, ¢) is a compact 0-dimensional manifold and Pr maps this
space to the interior of K. Finally, let index(p) = — dim(K') + 1. As before, we can choose perturbations
in a neighborhood of faces with codimension at most one such that the moduli space is empty in a
neighborhood of faces of codimension at most 2 and the moduli space over faces of co-dimension one
consists of a finite set of points. Proposition 7.39 implies that in a neighborhood of faces of co-dimension
one the moduli space is a 1-manifold whose boundary is the moduli space over the interior of faces of
codimension one. We employ Proposition 7.5 to extend the perturbation over the remaining part of K
such that the moduli space is a 1-manifold.

If there is a 4-manifold W' appearing in the family of metrics W without an admissible end, then the
situation is more complicated. The moduli space might contain reducible connections and we cannot
apply the general results of Subsection 7.2 to achieve regularity. Even if we can find such perturbations,
we need to guarantee that these perturbations can be chosen to be compactly supported. We do not attempt
to obtain general regularity results for 4-manifolds without admissible ends and we only focus on families
of metrics that appear in the proof of the main theorem.

We will be ultimately interested to construct perturbations for the families of metrics W{C where
0<j<k<j+N+1<2N + 1. Firstly let j <k < j + N. Then there are some components of the
family of metrics Wi without admissible ends. However, any such component is a GH component and
the results of Subsection 5.2 allow us to use the trivial perturbation to achieve regularity. Therefore, we
can run the above inductive argument again to construct a good perturbation for W{C Next, we have to
treat the case that k = j + N + 1. In this case, the component X (/) does not have any admissible end
and is not a Gibbons-Hawking manifold. The next two subsections will be concerned with regularity for

the families of metrics X (/) and Wg AN41-

7.6 Regularity on X (1)
Lemma 7.40. For 1 < N < 3,2 < k <3or(N,k) = (4,2), let A be a U(k)-connection on X ()

which is ASD with respect to a (possibly broken) metric. Suppose also x denotes the restriction of
A to L(N,1). Then there is a completely reducible U(k)-connection A’ such that c1(A’) = ¢1(A),
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k(A") < k(A) and the restriction of A’ to L(N,1) is x. The same conclusion holds if we only assume
that |F*(A)| 2 is small enough.

Proof. Throughout the proof, we use the notations introduced in Section 5.3. Let ¢1(A) = ie; +

iges + -+ +iyey and v = (i1,--- ,in). Letalso x = (** @ --- @ (% where 0 < s; < N. Note that
[v]y =51+ +spgmod N. Ifwy,--- ,wy € ZV satisty:
v=wy+ -+ W [wi]+ =8 mod N, (7.41)

then the completely reducible connection A’ = By, (9) @ - - - @ By, (¢) has the same limiting flat connec-
tionas A on L(N,1) and ¢1(A) = ¢1(A"). We say wy, - -+, wg is a nice (s1, . . ., S )-decomposition of
v, if (7.41) holds and x(A’) is not greater than x(A) for any ASD connection A with ¢1(A) = v and the
limiting flat connection x on L(N, 1).

v (0,0) (0,1)
(81752) (070) (171) (071)

w1 (07 0) <07 1) (07 0)

w2 (an) (170) (071)
k(A 0 2 3

Table 1: N =2,k =2

We have the following operations to simplify the discussion:

e Since the vector (1,--- ,1) € Z" represents the trivial cohomology class in Xy (1), if v admits a
nice (s1, . . ., g )-decomposition, then v + (m, - - - ,m) admits such a decomposition, too.

e If v admits a nice (s1,. .., S )-decomposition, then applying a permutation to the entries of v pro-
duces another vector with a nice (sy, . . ., si)-decomposition. Furthermore, for o € Sk, if v admits
anice (s1,.. ., s)-decomposition, then it also admits a nice (s,(1), - - - ; S(1))-decomposition.

e Given an arbitrary vector u € Z", if w1, - - -, wy, give a nice (s1, ..., s )-decomposition of v, then
the vectors wy + u, - - -, wy, + w give a nice (s1 + [u]4, ..., sk + [u]4)-decomposition of v + ku.

e If wy, - - -, wy determines a nice (sq, . . ., s;)-decomposition of v, then —wy, - - -, —wy, gives a nice
(—s1,...,—sk)-decomposition of —v,

v (0,0) (0,1)
(51782783) (07070) (07171) (0707 1) (17171)
wy (0,0) | (0,0) | (0,0) | (0,1)
Wy (0,0) | (0,1) | (0,0) | (0,1)
w3 (070) (170) (071) (170)
Y Y

Table 2: N =2,k =3
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v (0,0,0) (0,0,1)
(SlaSQ) (0’0) (172) (Oa 1) (272)
wr | (0,0,0) | (0,0,1) | (0,0,0) | (0,1,1)
wo (0,0,0) | (1,1,0) | (0,0,1) | (1,0,1)
k(A 0 z : 3
Table3: N =3,k =2
We wish to construct a nice (s1, . .., Sg)-decomposition for any vector v that [v]; = s1 + - - + s mod
N.If N = 1, we can use the first operation to reduce the problem to the case that v = (0). In this case, we
can pick wy = - -+ = wy = (0). That is to say, A’ is the trivial connection. Since x(A) is a non-negative

number for any ASD connection A, we obtain a nice decomposition of v. For2 < N <3and2 <k < 3
and (N, k) = (4,2), we can still use the above four operations to reduce our problem into checking the
existence of nice decompositions for the vectors in Tables 1, 2, 3, 4 and 5. Except two special cases in
Tables 4 and 5, the reducible connections A’ given in these tables have energy smaller than 1. Let A be
an ASD connection with ¢ (A) = ¢;1(A’) and the same limiting flat connection as A’ on L(N, 1). Then
k(A) is non-negative and x(A) — k(A’) is an integer. Therefore, except the cases that x(A’) = 1, we can
immediately conclude that x(A’) < k(A). Note that the same argument would apply if |F*(A)| 2 is
small enough. In the exceptional cases, if x(A) < r(A’), then A has to be a flat connection. Since Xy (1)
is simply connected, A must be the trivial flat connection. However, the limiting flat connection of A are
required to be non-trivial which is a contradiction. Therefore, the moduli space of ASD connections with
vanishing topological energy and the same ¢; and the same limiting flat connection on L(N, 1) as A’ is
empty. This also implies that this moduli space is empty if we consider the perturbed ASD equation for a
small perturbation. This completes the proof.

v (0,0,0) (0,0,1) (0,1,2)
(s1,82,83) | (0,0,0) | (0,1,2) | (1,1,1) | (0,0,1) | (1,1,2) | (0,2,2) | (0,0,0) | (0,1,2) | (1,1,1)
w1 (0,0,0) | (0,0,0) | (0,0,1) | (0,0,0) | (0,0,1) | (0,0,0) (0,0,0) (0,0,0) | (0,0,1)
wo (0,0,0) | (0,0,1) | (0,1,0) | (0,0,0) | (0,1,0) | (1,0,1) (0,0,0) (0,0,1) | (0,0,1)
w3 (0,0,0) | (1,1,0) | (1,0,0) | (0,0,1) | (1,0,1) | (0,1,1) | (—1,0,1) | (0,1,1) | (0,1,0)
K(A) 0 : 1 : 3 3 : i :
Table4: N =3,k =3
v (0,0,0,0) (0,0,0,1) (0,0,1,1)
(s1,52) (1,3) (0,0) (2,2) (1,0) (2,3) (2,0) (1,1)

wl (070707 1) (0’ 07070) (0’0’ 171) (070707 1) (0’ 07171) (07 07 171) (07 07071)
w2 (070507_1) (0707050) (0705_17_1) (0705070) (0307_150) (070’070) (0707150)
w(A) 3 [ s 1t 1 2

Table 5: N =4,k =2

|
[an)
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The above lemma can be partially generalized to the case that (N, k) = (4, 3):

Lemma 7.42. Suppose X4 (1) is equipped with a (possibly broken) cylindrical metric. Let A be a U(3)-
connection over X4(l) such that index(D4) > —5 with (3 being the restriction of A to S* x S%. Then
there is a completely reducible ASD U(k) connection A’ such that ¢c1(A") = c¢1(A), the limiting flat
connections on L(N, 1) are the same and r(A") < k(A).

Proof. We can use the operations introduced in Lemma 7.40 to reduce the problem to the cases shown in
Tables 6 and 7. In this table, for each choice of v, s1, so and s3, we give a triple of vectors wy, we and ws
in Z*. As it is clear from the table, the corresponding completely reducible ASD connection A’ might
have energy greater than 1. By the index formula, we have:

X(Xn (1) +o(Xn (1))
2

)+ —h00) + () 0

index(Dy) = 4kr(A) — (k* — 1)( 2

(8)

Let also /3’ denote the limiting flat connection of A’ on S' x S2. Therefore, the following difference:
(index(Dy) + h%(B)) — (index(Dy) + h(8'))

is divisible by 12 because it is equal to 12(x(A) — k(A’)). From Tables Tables 6 and 7, it is clear that

index(Da/) + hY(B") < 8. Since h°(3) = 2, the assumption implies that index(D4) + h°(3) = —3.
Therefore, we must have k(A’) < k(A).

v (0,0,0,0) (0,0,0,1)

(51, 52, 53) {0,0,0) 1,1,2) 22,00 | (0,1,3) | (0,0,1) | (L,L,3) 2,2,1) (3,3,3) (0,2,3)
w; (0,0,0,0) | (0,0,0,1) | (0,0,1,1) | (0,0,0,0y | (0,0,0,0y | (0,0,0,1) | (0,0,—1L,—1) | (0,L,1,1) | (0,0,0,0)
ws (0,0,0,0) | (0,0,1,0) | (©.0-1-1)| (0,0,0,1) | (0,0,0,0) | (0,0,0,1) | (0,0,1,1) | (0,—1,0,0) | (0,0,1,1)
ws (0,0,0,0) | (0,0,—1,—1) | (0.00.0) | (0,0,0,—1) | (0,0,0,1) | (0,0,0,—1) | (0,0,0,1) | (0,0,—1,0) | (0,0,—1,0)

index(Da/) + h°(3) —8 8 4 2 —4 4 8 4 2
k(A 0 s 1 3 T 1 1 1 7
Table6: N =4,k =3

v (0,0,1,1) (0,0,1,2)

(51, 52, 53) (0,0,2) | (1,1,0) | (2,2,2) (1,2,3) (0,0,3) [ (1,1,1) (3,3, 1) (0,1,2)
w (0,0,0,0) | (0,0,0,1) | (0,0,1,1) | (0,0,0,1) | (0,0,0,0) | (0,0,0,1) | (0,1,1,1) | (0,0,0,0)
ws (0,0,0,0) | (0,0,1,0) | (1,1,0,0) | (0,0,1,1) | (0,0,0,0) | (0,0,1,0) | (0,~1,0,0) | (0,0,0,1)
ws (0,0,1,1) | (0,0,0,0) | (-1,-1,00) | (0,0,0,—1) | (0,0,1,2) | (0,0,0,1) | (0,0,0,1) | (0,0,1,1)

index(Da) + h°(B) —4 0 8 6 4 0 0 —2

w(A) i i i i 1 i i i

Table 7: N = 4, k = 3 (continued)
]

Now we are ready to prove the Proposition 5.54 from Subsection 5.3. At various points in the proof,
we use an elementary observation about the indices of direct sums of two connections. Suppose A; and
As are two connections of rank k on a pair (X, ¢) which satisfy either Condition 5.3 or 5.7. Suppose also
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the restriction of these two connections on the admissible and the lens space ends are equal to each other.
Suppose also B is another connection of rank &’ on (X, ¢’). Then we have:

index(Da,@p) — index(Da,pp)  index(Da,) —index(Da,)
kE+F B k ‘

Proposition 7.43. Suppose N < 4, c is an arbitrary 2-cycle in X (l). Suppose M is a finite subset of
AR?_I. There exists an arbitrary small perturbation of the ASD equation over Xy (1) such that for any
path p along (X, c), with limiting flat connections o and 3o on L(N, 1) and S* x S?, we have:

(i) ifindex(p) < —h%(Bo) — h%(xo), then the moduli space My (Xn (1), ¢; Aly_,) is empty;

(ii) ifindex(p) = —h%(Bo) — h"(x0), then any element of M3 (Xn (1), ¢; M) is a completely reducible
connection associated to an element of Ky, ;.

Moreover, there exists a neighborhood V of M such that V < AR}:l and M,(Xy(1),¢; V) is compact.

Proof. Recall that the family of metrics X (/) is parametrized by K 11. We use a similar inductive
strategy as in Subsection 7.5 to define the perturbation w. That is to say, we construct w on open faces
F of K41 by induction on dim(F'). We also introduce an open neighborhood V of M in AR})_I which
we might shrink in each step of our inductive construction. Firstly, let 7" be an (N + 1)-ribbon tree
such that Fp is a vertex of Oy 1. This vertex determines a decomposition of X (1) into N connected
components which are denoted by W, ..., Wi_1. We also denote c; for W; nc. Let Wy be the connected
component which has S x S? as one of its boundary components. Therefore, the other components are
Gibbons-Hawking manifolds. The vertex Frr gives rise to a metric on each component W;. We apply
Proposition 7.31 to Wy and the set M to obtain a residual subset W,eg of WW. Let wq be a small element
of Wieg. We also fix the trivial perturbation on the GH components. These perturbations determine a
perturbation of the ASD equation for the vertex Fpr of Ky 1.

Suppose z = [A, B1, By ..., By_1] is an element of M (7! (Fr),¢; AY,_,) . Here B; is a con-
nection on (W, ¢;) which satisfies the ASD equation. The connection A defined on (W, co) satis-
fies a perturbed ASD equation. Let 3 be the limiting flat connection of A on S x S?. We claim
that if index(p) < —h"(By) — h"(x0). then the moduli space MY (7~ (Fr),c; AY;_,) is empty. We
shall also show that there is an open space V) < A;;fﬁl containing M such that the moduli space
Mg(ﬁ_l (Fr),c; V), for any p with index(p) = —h%(By) — h°(x0), is empty. In any of these two cases,
if the connection A is irreducible, then z is a regular connection. Thus, index(p) = —(N — 1) whichis a
contradiction. Therefore, we can assume that A = A1 @ - - - ® A,,, where A; is irreducible and the rank of
A; is at most 3. For the sake of exposition, we prove our claims in two special cases for N, [ and T'. The
more general case can be proved by similar tricks.

Firstly, let N = 4 and Fr determine the decomposition of X4(3) given in Figure 11. In this figure, W5
is diffeomorphic to the Gibbons-Hawking manifold X, introduced in Remark 5.29. Moreover, Wi # W5
is diffeomorphic to X 3 and gluing the components Wy, W1 and W5 gives rise to the manifold X3(3). Let
p be a path along (X4(1), ¢) such that index(p) < —h%(Bg) — h®(xo). Let also z = [A, By, B, B3] €
M (n1(F), ¢; Ay). We use Remark 5.29 to replace the (broken) ASD connection B, By] with a
completely reducible ASD connection [ B, B}] with the same limiting flat connection as [ B;, Bz] on the
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boundary component L(3, 1) of W1#W5. The choice of metrics on W7 and W5 implies that the index of
the path associated to [ B}, B5] is not greater than that of the path associated to [ By, Ba].

Since A = A1 ® - - - @ A,,, the broken perturbed ASD connection [A, B}, BS] can be also written as
the direct sum of m broken connections which we denote 21, ..., z,,. Each z; has rank at most 3. Thus,
Lemma 7.40 asserts that for each z;, there is a completely reducible connection y; with the same rank,
the first Chern Class, the same restriction to the boundary component L(3, 1) of X3(3) = Wo#W 1 #Wa.
Moreover, k(y;) < k(z;). The broken completely reducible connection y; @ - - - @ y,,, of rank 4 on
Wo#W1#W5 has the same ¢ and the restriction to L(3, 1) as [A, By, By]. But the energy of y1®- - - By,
is not greater than the energy of [A, B}, B}]. Let p, and 3, respectively, denote the path determined by
Y1 @ - - - ® Y, and the restriction of this connection to S' x S2. Let also p’ denote the path associated to
[A, B}, B}]. Dimension formula and Proposition 5.18 imply that:

index(p') + h%(B') = index(p,) + h°(B,) = —h° () (7.44)

where 3’ and X’ are the restrictions of [A, B}, B}] to the boundary components S x S? and L(3,1)
of Wo#W1#Ws. Inequalities in (7.44) immediately imply that if index(p) < —h°(8y) — h°(x0), then
M;j(ﬂ_l (F),c; AY) is empty. If index(p) = —h%(By) — h°(x0), then in all of the above inequalities, we
should have equality. Consequently:

index(D,,) + h°(B;) = index(Dy,) + h%(c;) = —h°(x;) (7.45)

Here o; and f3; are the restrictions of 1; and z; to S' x S2. The flat connection ; is also given by the
restriction of these two connections to L(3, 1). In this case, if the restriction of A to S* x S? belong to
M, then Proposition 7.31 implies that:

index(D,,) + - -+ + index(D,,,) = m — 1.

which contradicts (7.45).

Emptiness of the moduli spaces of the paths with index smaller than —h"(3) — h°(xo) implies that
the moduli space M (1 (F), ¢; A}) is compact for any path p with index(p) = —h°(8) — h°(x0).
In particular, there is a neighborhood Vy of M such that Vy AR}D_I and M (7= Y(F), ¢; Vo) is empty.
The only undesirable point is that wy, the restriction of w to W, is not necessarily compactly supported.
However, wg can be approximated by compactly supported perturbations. Thus, if a compactly supported
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perturbation is close enough to wy, then M (71 (F), ¢; AY) is empty if index(p) < “19(Bo) — hO(xo),
and M (7~ 1(F), c; Vy) is empty if index(p) = —h°(By) — h°(x0).

Next, let N = 4 and Fr determine the decomposition of X4(4) given in Figure 12. In this figure,
Wy and W3 are diffeomorphic to the Gibbons-Hawking manifold X5. Moreover, Wo# W #Ws5 is
diffeomorphic X 4. Essentially the same argument as in the previous case can be used to find a compactly
supported perturbation w on Wy and the open set V. The only difference is that we might need to use
Lemma 7.42 instead of Lemma 7.40. The index requirement for Lemma 7.42 can be also guaranteed by
Proposition 7.31.

Following the above construction, we can inductively extend the perturbation w on the vertices of
K41 into an admissible perturbation w on any open face F' of 1 with codimension at least one, and
find a neighborhood V of M with V < AR}ZI such that the following properties hold for any path p:

e Ifindex(p) < —h%(Bg) — h%(x0), then the moduli space M;(W_l (F), c) is empty.

e Ifindex(p) = —h%(By) — h°(x0). then the moduli space My (71 (F), ¢; V) is empty.

The perturbation w determines a perturbation in a neighborhood of the boundary of x4, which is
admissible and the analogues of the above two conditions hold. As the last step we extend w to the interior
of K +1. The argument in this case is also very similar to the case of the lower dimensional faces.

We use Proposition 7.35 to extend w to K1 such that any element of My (Xy (1), ¢; Afy_;) is
partially regular for any path p that index(p) < —h°(8g) — h°(xo) and its restriction to L(N, 1) is equal
to xo. Moreover, if p is a path whose index is —h%(83y) — h°(x0) and whose restriction to L(N, 1) is equal
to xo. then we require that My (X (), ¢; V) is partially regular and the map r : M%(Xn (1), V) =V
is transversal to the inclusion of M into V. If a connection A on Xx(!) represents an element of
M (XN (1), ¢; Aly_y) for a path p with index(p) < —h%(Bo) — h%(x0), then A has to be reducible. Let
A1 @@ A, be the decomposition of A into irreducible summands. Proposition 7.35 asserts that:

index(Dy4,) + - + index(Da,,) = m+ 1 — 2N (7.46)

In particular, if A; has rank 3, then N = 4, m = 2, and we have index(Dy,) > —5. By Lemma
7.40 or Lemma 7.42, we can find a completely reducible connection A/ such that ¢;(A4;) = ¢1(A4)),
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k(A;) < k(AL), and the restriction of A; and A/ to L(N, 1) agree with each other. Let A’ = A\ ®- - - @A,
« be the limiting value of A’ on St x S2, ; be the limiting value of A’ on S x S? and $3; be the limiting
value of A; on S x S? . Since

index(p) + h°(Bo) = index(Dar) + h%(@) = —h°(xo),

we should have index(p) = —h%(xo) — h%(Bo) and index(D4,) + hO(3;) = index(Dy/) + hO(a;) =
—h%(x;). Our inductive assumption and the emptiness of the moduli spaces associated to (X (1), c) and a
path with index smaller than —h° (o) — h%(8o) imply that the moduli space M (X (1), ¢; V) is compact
for a path p with index(p) = —h%(xo) — h°(Bo). If 3, the limiting flat connection of A on S* x S2,
belongs to M, then we can use part (ii) of Proposition 7.35 to improve the inequality in (7.46) as follows:

index(Da,) + -+ + index(Da4,,) = m — N. (7.47)
Therefore, we have:
— Y h%(xi) + B°(B;) =m — N. (7.48)
i=1

Since h%(x;), hY(B;) = rk(A;) — 1, the above inequality implies that m = N, i.e., A is a completely
reducible connection. O

Suppose U(1)-bundles L, ..., Ly on Xx(!) are chosen such that the path p determined by com-
pletely reducible connections on L1 @ - - - @ Ly has index at most —2(/N — 1). Propositions 5.18 and 5.25
imply that the cycle associated to L1 @ - - - @ Ly is equal to w, , for injective maps o : [N — ] — [N]
and 7 : [I] — [IV] with disjoint images. Up to permutation, the choices of the U(1)-bundles L; are also
unique. We can form the moduli space of completely reducible connections M., (X (1), we. ;) associated
to the family of metrics X (/). Restriction to S 1y 52 givesamap 757 : Kny1 — Aﬁv_l, which is the
composition of }flz)Jlg,T and the projection map form t to A%, ;. We assume that the inclusion map of M
in AR}ll is transversal to 7 . Then there are finitely many completely reducible connections on Xy (/)
in M (Xn (1), ws.,7) such that their limiting values belong to M. Let g € K41 be chosen such that that
the limiting value of the associated completely reducible ASD connection is an element of M. Using
the results of Subsection 7.3, we can make a small perturbation w(g) of the ASD equation such that the
completely reducible ASD connection becomes a regular element of the moduli space associated to X (1).
Note that the type of perturbations that we use in Subsection 7.3 do not change the set of completely
reducible connections. We can repeat the proof of Proposition 7.43 using perturbations whose values at
such g € K41 are close to w(g). In particular, we can show:

Proposition 7.49. Suppose N < 4 and M is a finite subset of A?\}ll such that the inclusion map of M

in AR;)_l is transversal to the map v, .. Then there exist an arbitrary small perturbation of the ASD
equation over X (1) and a neighborhood V of M such that for any path p along (X, we ), with limiting
connections xo = 1@ ---® (N "V and By on L(N,1) and S* x S?, we have:

(i) ifindex(p) < —2(N — 1), then the moduli space My (Xn (1), wgr; Al _,) is empty;

(i) if index(p) = —2(N — 1), then any element of My(Xy(l), wsr;V) is a regular completely
reducible connection associated to an element of K3 ;.
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7.7 Regularity on W/

In Subsection 7.5, we explained how one can inductively define good perturbations for the families of
metrics Wi, where 0 < j < k < j + N < 2N. In this section, we extend this construction to the families
of metrics W% ing1-for N < 4and 0 < I < N, such that it satisfies the properties which were used
in the proof of Theorem 6.26. We follow the same notation as in Subsection 6.3. The face of Cn o
corresponding to the cut S* x S? is denoted by Fy. We are interested in the moduli spaces associated
to the 2-cycle ¢o,; © W], . ; where o : [N — 1] — [N]and 7 : [I] — [N] are two injective maps. We
will write S and T for [N]\image(c) and image(7). Removing the cut S* x S? from (W}, y_1, o)
produces pairs (Wp, ¢g) and (X (1), ws,-). The family of metrics on the face Fy is given by a fixed
metric on Wy and the family Xy ({).

The pair (Wp, ¢p) has admissible ends. Therefore, we can use the results discussed in Subsection
7.2 to fix a compactly supported perturbation wg on Wy such that the moduli space M;’O(Wo, co; )
for any choice of a path p along (W, co) and an open face I' of AY; | is regular. In particular, if
index(p) < —(NN — 1), then the moduli space M° (W, co; Aly_;) is empty. In the case that index(p) =
—(N = 1), M5°(Wo, co; I') is also empty unless I' = AR?_I in which case the moduli space is a compact
0-dimensional manifold. If we fix o € €X' (Y}, vs) and 8 € €& (Y}, y7), there is at most one path p such
that M° (Wo, co; Al _;) is O-dimensional and the restriction of p to the two admissible ends are a, (3.
We denote this (possibly empty) moduli space by M («, 3). Using Proposition 7.7 and Remark 7.8, we
can assume that for any choice of v and f3, the restriction map ¢ : M (a, ) — A?{f_l is transversal to
the maps holg : Ay_1 — Aﬁv_l and Hg : [0,1] x Ay_1 — A’;V_l. In particular, rg is transversal to
the maps r, -, defined in the previous subsection.

Let w; be a perturbation of the ASD equation on (Xy (1), w, ) provided by Proposition 7.49 where
M is given by:
M = | Jro(M(a, 8)).
a75

Suppose that the map 5% : K11 — AY,_; is induced by the restriction map of the completely reducible
connections in the moduli space M (X (1), wo,7; Aly_;) where index(p) = —2(N — 1). By choosing
w1 small enough, we can assume that 7, 2 (¢) and (r¥)~*(q), for any g € M, are arbitrarily close to each
other and have the same number of elements. The perturbations wgy and w; define a perturbation of the
ASD equation over the face Fy of ;2. We can use the familiar inductive construction of Subsection 7.5
to extend this perturbation to an admissible perturbation w over K 42. As a consequence of Proposition
7.49, if we use this perturbation w in the definition of the moduli space for the pair (W} +N+1>Co,r)» then
it satisfies all the required properties.
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