MAT 132

Final Exam Spring 2017

Name: \qquad

ID: \qquad

Recitation:

\qquad

List of Recitations:

R01	MW 12:00 pm-12:53 pm	Frederik Benirschke
R02	TuTh 10:00 am-10:53 am	Juan Ysimura
R03	TuTh 8:30am- 9:23am	Erik Gallegos Baños
R04	MW 11:00am-11:53am	Paul Frigge
R20	TuTh 5:30pm-6:23pm	Jean-François Arbour
R21	10:00am- 10:53am	Lisandra Hernandez Vazquez
R22	TuTh 11:30am- 12:23pm	Robert Abramovic

Instructions:

(1) Fill in your name and Stony Brook ID number at the top of this cover sheet.
(2) This exam is closed-book and closed-notes; no calculators, no phones.
(3) Leave your answers in exact form (e.g. $\sqrt{2}$, not ≈ 1.4) and simplify them as much as possible (e.g. $1 / 2$, not $2 / 4$) to receive full credit.
(4) Answer all questions in the space provided. If you need more room use the blank backs of the pages.
(5) Show your work; correct answers alone will receive only partial credit.

Problem	1 $(16 \mathrm{pts})$	2 $(16 \mathrm{pts})$	3 $(16 \mathrm{pts})$	4 $(14 \mathrm{pts})$	5 $(16 \mathrm{pts})$	6 $(16 \mathrm{pts})$	7 $(16 \mathrm{pts})$	8 $(16 \mathrm{pts})$	9 $(14 \mathrm{pts})$	Total $(140 \mathrm{pts})$
Score										

1. Compute the following integrals
(a) $\int \frac{10 x-19}{x^{2}-x-12} d x$
(b) $\int_{1}^{e} \frac{(\ln (x))^{2}+1}{x} d x$
2. A large tank contains 50 kg of salt dissolved in 10000 liters of water. A solution of water and salt containing 0.02 kg of salt per liter enters the tank through a pipe at a rate of 3 liters per minute. At the same time, the the mixture of salt and water is pumped out of the tank at a rate of 3 liters per minute. The tank is kept well mixed and the concentration of salt in the tank is uniform. Let $S(t)$ denote the amount of salt in the tank after t minutes, measured in kg .
(a) Write down a differential equation for $S(t)$.
(b) Write down an initial condition for $S(t)$.
(c) Solve the differential equation with the initial condition given in parts (a) and (b).
3. (a) Find the interval of convergence of the following series:

$$
\sum_{n=1}^{\infty} \frac{5^{n}(x+1)^{n}}{\sqrt{n+4}}
$$

(b) Find the Maclaurin series of $f(x)=x e^{\frac{1}{2} x^{4}}$. What is the radius of convergence?
4. (I) Which one of the following options gives a convergent improper integral?
(a) $\int_{0}^{1} \frac{1}{x+1} d x$
(b) $\int_{0}^{1} \frac{1}{x^{2}} d x$
(c) $\int_{1}^{\infty} \frac{1}{x^{2}+1} d x$
(d) $\int_{1}^{\infty} \frac{1}{x+1} d x$
(II) We are looking for the Maclaurin series of a function $f(x)$. We know that $f^{(20)}(0)=19!\cdot 2^{19}$. What is the coefficient of x^{20} in the Maclaurin series of $f(x)$?
(a) $20!\cdot 19!\cdot 2^{19}$
(b) $\frac{1}{20 \cdot 2}$
(c) $\frac{2^{19}}{20}$
(d) $19!\cdot 2^{19}$

Recall that the coefficient of x^{n} in a power series $\sum_{i=0}^{\infty} a_{i} x^{i}$ defined to be a_{n}.
(III) A power series is convergent at -1 and divergent at 1 . Which one of the following points could be in the interval of the convergence of this power series:
(a) 2
(b) -2
(c) 4
(d) 10
(IV) Write down a convergent geometric series with infinitely many non-zero terms such that the sum is equal to e.
5. We want to use a Taylor polynomial of $f(x)=\sqrt[3]{x}$ to approximate $\sqrt[3]{25}$.
(a) What would be a good choice for the center of the Taylor polynomial? Why?
(b) Use the Taylor polynomial of degree 2 centered at the point that you found in the previous part to write an estimate for $\sqrt[3]{25}$.
(c) Find an upper bound for the error of your estimate.
6. (a) Solve the following initial value problem:

$$
y^{\prime \prime}-2 y^{\prime}+5 y=0 \quad y\left(\frac{\pi}{2}\right)=0 \quad y^{\prime}\left(\frac{\pi}{2}\right)=2
$$

(b) Find the general solution of the following differential equation:

$$
\left(x^{2}+1\right) y^{\prime}+3 x^{3} y=6 x e^{-\frac{3}{2} x^{2}}
$$

7. (a) Determine whether the following series is convergent or divergent. If it converges, find its sum.

$$
\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{(2 n)!3^{2 n}}
$$

(b) Determine whether the following series is convergent or divergent. State the test you use, and show your work:

$$
\sum_{n=2}^{\infty} \frac{2+\cos \left(n^{2}\right)}{\sqrt{n}-1}
$$

8. (a) Let \mathcal{R} be the region enclosed by the x-axis, $x=2$ and $y=x^{2}$. Find the volume obtained by rotating \mathcal{R} about the line $y=-4$.
(b) Find the length of the curve $x(t)=\cos (t)+t \sin (t), y(t)=\sin (t)-t \cos (t)$ for $0 \leq t \leq \pi$.
9. Find a positive number t such that the average of the function $f(x)=(x+1) e^{x}$ in the interval $[0, t]$ is equal to 2 .

Scratch Paper

