MAT 132 Midterm 1 Spring 2017

Name:	ID:			

Problem	$ \begin{array}{c} 1\\ (10 \text{ pts}) \end{array} $	$\begin{array}{c} 2 \\ (10 \text{ pts}) \end{array}$	3 (10 pts)	$\begin{array}{c} 4 \\ (10 \text{ pts}) \end{array}$	5 (10 pts)	$\begin{array}{c} 6 \\ (10 \text{ pts}) \end{array}$	$\begin{array}{c} 7 \\ (15 \text{ pts}) \end{array}$	$\frac{8}{(25 \text{ pts})}$	Total (100 pts)
Score									

Instructions:

- (1) Fill in your name and Stony Brook ID number at the top of this cover sheet.
- (2) This exam is closed-book and closed-notes; no calculators, no phones.
- (3) Leave your answers in exact form (e.g. $\sqrt{2}$, not ≈ 1.4) and simplify them as much as possible (e.g. 1/2, not 2/4) to receive full credit.
- (4) Answer all questions in the space provided. If you need more room use the blank backs of the pages.
- (5) Show your work; correct answers alone will receive only partial credit.

Evaluate the following integrals. Each part worths 10 points:

1.
$$\int_0^1 \frac{\arctan^2(x) + 1}{x^2 + 1} \, dx$$

2. $\int e^{3t} \cos(2t) \, dt$

3.
$$\int_{1}^{3} \frac{3x+1}{x^2 - 2x - 15} \, dx$$

 $4. \ \int x \ln(x)^2 \, dx$

5.
$$\int \frac{\cos(x)\sin(x)}{2-\cos(x)} \, dx$$

7. (15 points) Albert's boomerang has the shape of the region enclosed by the parabolas $y = x^2 - 3x + 3$ and $y = 2x^2 - 6x + 5$. Find the area of his boomerang.

- 8. (25 points) Let \mathcal{R} be the region obtained by rotating the region enclosed by the x-axis, y-axis, $x = \frac{\pi}{3}$, and the curve $y = \cos(x)$.
 - (a) Sketch the shape of this region in the coordinate plane.

(b) Let S be the solid given by rotating the region \mathcal{R} about the y-axis. Find the volume of S.

(c) Let \mathcal{T} be the solid given by rotating the region \mathcal{R} about the horizontal line y = 2. Find the volume of \mathcal{T} .