Practice Exam for Midterm 2

1. Evaluate the sum of the following series:

$$
\sum_{n=1}^{\infty} 2^{3 n+2} 3^{-2-2 n}
$$

2. Find the length of the curve $y=\int_{0}^{x} \sqrt{t^{2}+6 t+8}$ for $1 \leq x \leq 4$.
3. Determine whether the following series converges or not. State the test that you are using and show your work.

$$
\sum_{n=2}^{\infty} \sqrt{\frac{n-2}{n^{5}+2 n+3}}
$$

4. Determine whether the following series converges or not. State the test that you are using and show your work.

$$
\sum_{n=4}^{\infty} \frac{1}{n \ln (n)[\ln (\ln (n))]^{1 / 2}}
$$

5. Determine whether the following improper integral converges or not.

$$
\int_{0}^{1} \frac{1}{\sqrt{x}+x^{2}} d x
$$

6. Find all the values of the parameter t such that the average value of $f(x)=2+6 x-3 x^{2}$ on the interval $[0, t]$ is 3 .
7. Find the center of mass of a plate which has the shape of a quarter-circle of radius 2 and has uniform density. To answer this question, you firstly need to put the quarter-circle in a coordinate system. Please be explicit about what coordinate system you choose and then give your final answer with respect to your coordinate system.
8. A swimming pool, filled with water, has the shape of an inverted frustum. (A frustum is obtained from a right circular cone by cutting off the tip.) The radius of the upper and lower bases are respectively equal to 12 m and 8 m . The height of the pool is also equal to 2 m . Find the work required to empty the pool by pumping all of the water to the top of the pool. (The density of water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$.)
