Mat 211 Midterm 2 Spring 2016

Name:	ID:
Iname:	1D:

Problem	$\frac{1}{(15\mathrm{points})}$	2 (15 points)	3 (10 points)	$\begin{array}{c} 4 \\ (20 \mathrm{points}) \end{array}$	$5 \\ (15 \text{ points})$	$ \begin{array}{c} 6\\ (25+10\text{points}) \end{array} $	$\begin{array}{c} \text{Total} \\ (100 + 10 \text{ points}) \end{array}$
Score							

Instructions:

- (1) Fill in your name and Stony Brook ID number at the top of this cover sheet.
- (2) This exam is closed-book and closed-notes; no calculators, no phones.
- (3) Leave your answers in exact form (e.g. $\sqrt{2}$, not ≈ 1.4) and simplify them as much as possible (e.g. 1/2, not 2/4) to receive full credit.
- (4) Answer all questions in the space provided. If you need more room use the blank backs of the pages.
- (5) Show your work; correct answers alone will receive only partial credit.

1. In each part, a basis \mathfrak{B} of \mathbb{R}^2 is given (you don't need to show \mathfrak{B} is a basis). Find he \mathfrak{B} -coordinate of the vector v.

(a)
$$\mathfrak{B} = \{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ 4 \end{bmatrix} \}, v = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$

(b)
$$\mathfrak{B} = \left\{ \begin{bmatrix} 1\\ -1 \end{bmatrix}, \begin{bmatrix} -4\\ 5 \end{bmatrix} \right\}, v = \begin{bmatrix} 2\\ 4 \end{bmatrix}$$

2. Find bases for the image and the kernel of the linear transformation defined by the following matrix:

$$A = \left[\begin{array}{rrr} 2 & 2 & -2 \\ 3 & 4 & -6 \\ 4 & 5 & -7 \end{array} \right]$$

- 3. Determine whether each statement below is correct or not. You don't need to justify your answer; just give a "yes" or "no" answer.
 - (a) Let $C(\mathbb{R},\mathbb{R})$ be the vector space that consists of continuous functions $f:\mathbb{R}\to\mathbb{R}$. Define W as:

$$W = \{ f \in C(\mathbb{R}, \mathbb{R}) \mid f(20) = 16 \}$$

Is W a vector subspace of $C(\mathbb{R},\mathbb{R})$?

(b) Let $W \subset \mathbb{R}^3$ be defined as:

$$W = \{ (x, y, z) \in \mathbb{R}^3 \mid x \le y \le 2z \}$$

Is W a vector subspace of \mathbb{R}^3 ?

(c) Let P_2 be the vector space of degree at most 2 polynomials and \mathfrak{B} be the basis for P_2 that consists of 1, x, and x^2 . Is:

$$T: P_2 \to \mathbb{R}^3$$
$$T(Q) = [Q]_{\mathfrak{B}}$$

(d) Let l^{∞} be the linear space of all infinite sequences of numbers where addition and scalar multiplication is defined as:

$$(x_0, x_1, x_2, \dots) + (y_0, y_1, y_2, \dots) := (x_0 + y_0, x_1 + y_1, x_2 + y_2, \dots)$$

 $k(x_0, x_1, x_2, \dots) := (kx_0, kx_1, kx_2, \dots)$

Consider the map $T: l^{\infty} \to l^{\infty}$:

$$T(x_0, x_1, x_2, \dots) := (0, x_1, x_3, \dots)$$

Is the vector (0, 1, 2, 3, ...) in the image of T?

(e) Let T be defined as in the previous part. Is the vector (0, 1, 2, 3, ...) in the kernel of T?

- 4. In each part, is the given set of vectors a basis for ℝ³? If not, is it possible to find a subset of the given vectors to form a basis? Justify your answer; if you think it is not possible explain why. If you think it is possible, find a subset which is a basis.
 - (a)

$$v_1 = \begin{bmatrix} 1\\2\\3 \end{bmatrix} \qquad v_2 = \begin{bmatrix} 1\\7\\4 \end{bmatrix}$$

$$v_1 = \begin{bmatrix} 1\\0\\0 \end{bmatrix} \qquad v_2 = \begin{bmatrix} 3\\5\\6 \end{bmatrix} \qquad v_3 = \begin{bmatrix} 2\\4\\0 \end{bmatrix}$$

(c)

$$v_1 = \begin{bmatrix} 1\\2\\1 \end{bmatrix} \quad v_2 = \begin{bmatrix} -2\\-3\\-1 \end{bmatrix} \quad v_3 = \begin{bmatrix} 6\\11\\5 \end{bmatrix} \quad v_4 = \begin{bmatrix} 1\\3\\3 \end{bmatrix}$$

5. Let A be the following 2×2 matrix:

$$A = \left[\begin{array}{cc} 2 & 0 \\ 1 & 6 \end{array} \right]$$

and the basis $\mathfrak{B} = \{v_1, v_2\}$ consists of the following vectors:

$$v_1 = \left[\begin{array}{c} 2\\1 \end{array} \right] \qquad v_2 = \left[\begin{array}{c} 7\\4 \end{array} \right]$$

Find the matrix B of the linear transformation $T(\vec{x}) = A\vec{x}$ with respect to the basis \mathfrak{B} .

- 6. Different parts of this question are not necessarily related to each other. So if you can't do one part, don't give up on the other parts.
 - (a) Show that the following set determines a basis for $\mathbb{R}^{2\times 2}$: (Hint: You can use the fact that $\dim(\mathbb{R}^{2\times 2}) = 4$.)

 $\mathfrak{B} := \left\{ \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right], \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right] \right\}$

(b) Find the $\mathfrak B ext{-coordinate}$ of the following matrix:

$$\left[\begin{array}{rrr}1&3\\9&5\end{array}\right]$$

(c) Show $T:\mathbb{R}^{2\times 2}\to\mathbb{R}^{2\times 2},$ defined as follows, is a linear transformation.

$$T(M) = M \begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix} - \begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix} M$$

- (d) Is T an isomorphism? Justify your answer.
- (e) Find the \mathfrak{B} -matrix of the linear transformation T.

(f) (Bonus question) Find a basis for the kernel and the image of T.