## Problem Set 1

1. (a) Compute the inner product $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right] \cdot\left[\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right]$.
(b) Two vectors are orthogonal to each other if their inner product is equal to 0 . Let $x=\left[\begin{array}{c}3 \\ -2 \\ -1\end{array}\right]$ and $y=\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$. Find the scalar $c \in \mathbb{R}$ such that the inner product of $x-c y$ and $y$ is zero.
(c) Let $x=\left[\begin{array}{c}4 \\ -8 \\ 2\end{array}\right], e_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ and $e_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$. Find scalars $c_{1}, c_{2} \in \mathbb{R}$ such that the inner product of $x-c_{1} e_{1}-c_{2} e_{2}$ with any of the two vectors $e_{1}$ and $e_{2}$ is zero.
2. Suppose $\left\{a_{i}\right\}_{i \in \mathbb{N}}$ is a non-decreasing sequence of real numbers. That is to say:

$$
a_{0} \leq a_{1} \leq a_{2} \leq \ldots
$$

We want to show any such sequence is convergent. Let $z$ denote the least upper bound of the set $\left\{a_{0}, a_{1}, a_{2}, \ldots\right\}$.
(i) Show that for any positive real number $\delta$, there is $N$ such that $z-\delta \leq a_{N} \leq z$.
(ii) Use the assumption on $\left\{a_{i}\right\}_{i \in \mathbb{N}}$ and the definition of $N$ to show that for any $n \geq N$, we have $z-\delta \leq a_{n} \leq z$.
(iii) Use the last part to conclude that the sequence is convergent to $z$.
3. We want to show that the following set does not have a least upper bound in the set of rational numbers

$$
A=\left\{\left.\frac{m}{n} \in \mathbb{Q} \right\rvert\,\left(\frac{m}{n}\right)^{2}<2\right\} .
$$

We assume that there is a least upper bound $z$ for this set and then we get a contradiction.
(i) Firstly let $z^{2}<2$. Show that $\frac{3 z+2}{z+3}$ is a rational number strictly larger than $z$ and $\left(\frac{3 z+2}{z+3}\right)^{2}<2$. Why is it impossible?
(ii) If $z^{2}>2$, then show that $\frac{3 z+2}{z+3}$ is a positive rational number which is less than $z$ and is an upper bound for the set $A$. Why is it impossible?
(iii) Using the last two parts and the fact that there is no rational number which squares to 2 (no need to prove this fact), conclude that $A$ does not have a rational least upper bound $z$.
4. (i) Show that intersection of finitely many open sets is again an open set.
(ii) Find infinitely many open subsets $X_{1}, X_{2}, \ldots$ of $\mathbb{R}^{2}$ such that:

$$
\bigcap_{i=1}^{\infty} X_{i}
$$

is not an open set.

