Problem Set 2

1. (i) Find a subset of the following vectors which is a basis for \mathbb{R}^3

•

$$S = \left\{ \begin{bmatrix} 2\\-3\\1 \end{bmatrix}, \begin{bmatrix} 1\\4\\-2 \end{bmatrix}, \begin{bmatrix} -8\\12\\-4 \end{bmatrix}, \begin{bmatrix} 1\\37\\-17 \end{bmatrix}, \begin{bmatrix} -3\\-5\\8 \end{bmatrix} \right\}$$

(ii) The following vectors are linearly independent. By adding vectors to it, extend this set into a basis

($\begin{bmatrix} 2 \end{bmatrix}$		3)	
$S = \left\{ \right.$	1	,	1		\ }.
	0		1		
l	1		0		
•				· /	

- 2. Find the boundary of each of the following sets. You don't need to justify your answer.
 - (i) The unit circle $C = \{(x,y) \, : \, x^2 + y^2 = 1\}$
 - (ii) The upper half-plane $H=\{(x,y)\,:\,y>0\}$
 - (i) The one-point set $S = \{(1,1)\}$
 - (i) The set $\mathbb{Q}^2 = \{(x,y) : x, y \in \mathbb{Q}\}$ (where \mathbb{Q} denotes the set of rational numbers)

3. Use the Gram-Schmidt process to turn the following basis of \mathbb{R}^4 into an orthonormal basis. (We saw the Gram-Schmidt in the context of an example on Friday without mentioning its name. We'll review this process in more generality on Monday.)

$$S = \left\{ \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\-1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\1 \end{bmatrix} \right\}.$$

4. (i) Find a basis for the following subspace of \mathbb{R}^4 :

$$W = \left\{ \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \in \mathbb{R}^4 \mid x - y + 2z + w = 0, \ 2x - 3y - z + 7w = 0 \right\}$$

(ii) Use the basis in the last part to find an orthonormal basis for W.

5. Suppose S is a subset of a vector space V which has $\dim(V)$ elements. Using the properties of bases that we discussed in the class, show that S is a generating set if and only if it is linearly independent.

- 6. Suppose $\{x_1, x_2, \ldots, x_n\}$ is a basis for a vector space V. Show that each of the following sets is also a basis for V.
 - (i) $\{x_1 + x_2, x_2, x_3, \dots, x_n\}.$

(i) $\{\lambda \cdot x_1, x_2, x_3, \dots, x_n\}$, where λ is a non-zero number.