Problem Set 2

1. (i) Find a subset of the following vectors which is a basis for \mathbb{R}^{3}

$$
S=\left\{\left[\begin{array}{c}
2 \\
-3 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
4 \\
-2
\end{array}\right],\left[\begin{array}{c}
-8 \\
12 \\
-4
\end{array}\right],\left[\begin{array}{c}
1 \\
37 \\
-17
\end{array}\right],\left[\begin{array}{c}
-3 \\
-5 \\
8
\end{array}\right]\right\}
$$

(ii) The following vectors are linearly independent. By adding vectors to it, extend this set into a basis

$$
S=\left\{\left[\begin{array}{l}
2 \\
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
3 \\
1 \\
1 \\
0
\end{array}\right]\right\}
$$

2. Find the boundary of each of the following sets. You don't need to justify your answer.
(i) The unit circle $C=\left\{(x, y): x^{2}+y^{2}=1\right\}$
(ii) The upper half-plane $H=\{(x, y): y>0\}$
(i) The one-point set $S=\{(1,1)\}$
(i) The set $\mathbb{Q}^{2}=\{(x, y): x, y \in \mathbb{Q}\}$ (where \mathbb{Q} denotes the set of rational numbers)
3. Use the Gram-Schmidt process to turn the following basis of \mathbb{R}^{4} into an orthonormal basis. (We saw the Gram-Schmidt in the context of an example on Friday without mentioning its name. We'll review this process in more generality on Monday.)

$$
S=\left\{\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right]\right\}
$$

4. (i) Find a basis for the following subspace of \mathbb{R}^{4} :

$$
W=\left\{\left.\left[\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right] \in \mathbb{R}^{4} \right\rvert\, x-y+2 z+w=0,2 x-3 y-z+7 w=0\right\}
$$

(ii) Use the basis in the last part to find an orthonormal basis for W.
5. Suppose S is a subset of a vector space V which has $\operatorname{dim}(V)$ elements. Using the properties of bases that we discussed in the class, show that S is a generating set if and only if it is linearly independent.
6. Suppose $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is a basis for a vector space V. Show that each of the following sets is also a basis for V.
(i) $\left\{x_{1}+x_{2}, x_{2}, x_{3}, \ldots, x_{n}\right\}$.
(i) $\left\{\lambda \cdot x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right\}$, where λ is a non-zero number.

