Problem Set 3

1. Determine the kernel of the following linear transformations:

(i)
$$T\left(\begin{bmatrix} x\\ y\\ z\\ w \end{bmatrix} \right) = \begin{bmatrix} 3x+2y+5z-w\\ 5x+3y+z+w \end{bmatrix}.$$

(ii)
$$T\left(\begin{bmatrix} x\\ y\\ z \end{bmatrix}\right) = \begin{bmatrix} x+7y+z\\ 2x+z+3y\\ z+3x-y \end{bmatrix}$$
.

2. Verify whether the vector v is in the column space of the matrix A. Show your work.

(i)
$$v = \begin{bmatrix} 1\\7\\9 \end{bmatrix}, A = \begin{bmatrix} 1 & -1 & 5\\2 & 0 & 1\\3 & 1 & -7 \end{bmatrix}.$$

(ii)
$$v = \begin{bmatrix} 1\\ 3\\ -1\\ 1 \end{bmatrix}, A = \begin{bmatrix} 1 & 5\\ 0 & 3\\ 1 & 3\\ 0 & 2 \end{bmatrix}.$$

3. Determine whether the given functions $f:\mathbb{R}^2\to\mathbb{R}$ are continuous at the point (0,0)

(i)
$$f(x,y) = \begin{cases} \frac{\sin(x)\cos(y)}{x} & x \neq 0\\ \cos(y) & x = 0 \end{cases}$$

(ii)
$$f(x,y) = \begin{cases} \frac{x^3y}{x^4+y^4} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$
.

4. For any $m \times n$ matrix A show that $T : \mathbb{R}^n \to \mathbb{R}^m$, defined as follows is continuous.

$$T(x) = Ax.$$

(Hint: Firstly show that it suffices to show that m = 1, and then show that for any ϵ we can take $\delta = \frac{\epsilon}{a \cdot n}$ where a is the maximum of the magnitudes of the entries of A.)

- 5. Let $U \subset \mathbb{R}^n$ be an open set and $f: U \to \mathbb{R}^m$ be a function.
 - (i) Show that if f is continuous then the inverse image $f^{-1}(V)$ for any open subset V of \mathbb{R}^m is an open set.

(ii) Show that if for any open subset V of \mathbb{R}^m , the inverse image set $f^{-1}(V)$ is open, then f is continuous.

- 6. Let V be a subspace of \mathbb{R}^n and V^{\perp} be its orthogonal complement. Let $S_1 = \{v_1, v_2, \ldots, v_k\}$ is an orthonormal basis for V.
 - (i) Show that any vector x in \mathbb{R}^n can be written as

$$x - (x \cdot v_1)v_1 - (x \cdot v_2)v_2 - \dots - (x \cdot v_k)v_k$$

belongs to V^{\perp} .

(ii) Let S_2 be an orthonormal basis for V^{\perp} . Use the last part to show that $S_1 \cup S_2$ is a generating set for \mathbb{R}^n .

(iii) Show that $S_1 \cup S_2$ is linearly independent. (Hint: Use the fact that any two vectors in $S_1 \cup S_2$ are orthogonal to each other.)

(iv) Conclude that:

$$\dim(V) + \dim(V^{\perp}) = n.$$