Problem Set 3

1. Determine the kernel of the following linear transformations:
(i) $T\left(\left[\begin{array}{l}x \\ y \\ z \\ w\end{array}\right]\right)=\left[\begin{array}{c}3 x+2 y+5 z-w \\ 5 x+3 y+z+w\end{array}\right]$.
(ii) $T\left(\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right)=\left[\begin{array}{c}x+7 y+z \\ 2 x+z+3 y \\ z+3 x-y\end{array}\right]$.
2. Verify whether the vector v is in the column space of the matrix A. Show your work.
(i) $v=\left[\begin{array}{l}1 \\ 7 \\ 9\end{array}\right], A=\left[\begin{array}{ccc}1 & -1 & 5 \\ 2 & 0 & 1 \\ 3 & 1 & -7\end{array}\right]$.
(ii) $v=\left[\begin{array}{c}1 \\ 3 \\ -1 \\ 1\end{array}\right], A=\left[\begin{array}{ll}1 & 5 \\ 0 & 3 \\ 1 & 3 \\ 0 & 2\end{array}\right]$.
3. Determine whether the given functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ are continuous at the point $(0,0)$
(i) $f(x, y)=\left\{\begin{array}{ll}\frac{\sin (x) \cos (y)}{x} & x \neq 0 \\ \cos (y) & x=0\end{array}\right.$.
(ii) $f(x, y)= \begin{cases}\frac{x^{3} y}{x^{4}+y^{4}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}$
4. For any $m \times n$ matrix A show that $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, defined as follows is continuous.

$$
T(x)=A x .
$$

(Hint: Firstly show that it suffices to show that $m=1$, and then show that for any ϵ we can take $\delta=\frac{\epsilon}{a \cdot n}$ where a is the maximum of the magnitudes of the entries of A.)
5. Let $U \subset \mathbb{R}^{n}$ be an open set and $f: U \rightarrow \mathbb{R}^{m}$ be a function.
(i) Show that if f is continuous then the inverse image $f^{-1}(V)$ for any open subset V of \mathbb{R}^{m} is an open set.
(ii) Show that if for any open subset V of \mathbb{R}^{m}, the inverse image set $f^{-1}(V)$ is open, then f is continuous.
6. Let V be a subspace of \mathbb{R}^{n} and V^{\perp} be its orthogonal complement. Let $S_{1}=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is an orthonormal basis for V.
(i) Show that any vector x in \mathbb{R}^{n} can be written as

$$
x-\left(x \cdot v_{1}\right) v_{1}-\left(x \cdot v_{2}\right) v_{2}-\cdots-\left(x \cdot v_{k}\right) v_{k}
$$

belongs to V^{\perp}.
(ii) Let S_{2} be an orthonormal basis for V^{\perp}. Use the last part to show that $S_{1} \cup S_{2}$ is a generating set for \mathbb{R}^{n}.
(iii) Show that $S_{1} \cup S_{2}$ is linearly independent. (Hint: Use the fact that any two vectors in $S_{1} \cup S_{2}$ are orthogonal to each other.)
(iv) Conclude that:

$$
\operatorname{dim}(V)+\operatorname{dim}\left(V^{\perp}\right)=n
$$

