
Problem Set 3

1. Determine the kernel of the following linear transformations:

(i) T



x
y
z
w


 =

[
3x+ 2y + 5z − w
5x+ 3y + z + w

]
.

Solution. Suppose


x
y
z
w

 is in the kernel of T . Then we have:

{
3x+ 2y + 5z − w = 0
5x+ 3y + z + w = 0

=⇒
{

3x+ 2y + 5z − w = 0
8x+ 5y + 6z = 0

=⇒
{

1
8y +

11
4 z − w = 0

8x+ 5y + 6z = 0

The second system is obtained from the first by adding the first equation to the second equation.
Then subtracting 3

8 times the second equation from the first one gives the third system. Now if we
pick y and z arbitrarily, then the second equation can be used to determine x and the first equation
can be used to determine w. Therefore, a general solution to the above system is given as:


1
8s+

11
4 t

s
t

− 5
8s−

3
4 t

 | s,t ∈ R

 .

(ii) T

 x
y
z

 =

 x+ 7y + z
2x+ z + 3y
z + 3x− y

 .
Solution. Suppose

 x
y
z

 is in the kernel of T . Then we have:

 x+ 7y + z = 0
2x+ 3y + z = 0
3x− y + z = 0

=⇒

 x+ 7y + z = 0
x− 4y = 0
2x− 8y = 0

=⇒

 11y + z = 0
x− 4y = 0
0 = 0

The second system is obtained from the first one by subtracting the first equation from the second
and the third equations. Then subtracting multiples of the second equation from the first and the
third equations gives rise to the third system. Now if we pick y arbitrarily, then the first equation
can be used to determine z, the second equation can be used to determine x and the third equation
is always satisfied. Therefore, a general solution to the above system is given as:

 4t
t
−11t

 | t ∈ R
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2. Verify whether the vector v is in the column space of the matrix A. Show your work.

(i) v =

 1
7
9

 , A =

 1 −1 5
2 0 1
3 1 −7

.

Solution. If the vector v is equal to A

 x
y
z

, then x, y and z need to satisfy the following

x

 1
2
3

+ y

 −10
1

+ z

 5
1
−7

 =

 1
7
9

 =⇒

 x− y + 5z = 1
2x+ z = 7
3x+ y − 7z = 9

=⇒

 4x− 2z = 10
2z = 2
3x+ y − 7z = 9

To obtain the second system, we subtract halves of the first and the third equations from the second
equation and add then add the third equation to the first equation. The second equation of the
second system implies that z = 1. Using the first equation next we can conclude that x = 3.
Finally y = 7 is the consequence of the third equation. In particular, these choices of x, y and z
satisfy the equations and v is in the column space of A.

(ii) v =


1
3
−1
1

 , A =


1 5
0 3
1 3
0 2

.

Solution. If the vector v is equal to A

[
x
y

]
, then x and y need to satisfy the following

x


1
0
1
0

+ y


5
3
3
2

 =


1
3
−1
1

 =⇒


x+ 5y = 8
3y = 3
x+ 3y = −1
2y = 1

The above system doesn’t have any solution because the second equation implies that y = 1 and
the last equation implies that y = 1

2 . So v is in the column space of A.
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3. Determine whether the given functions f : R2 → R are continuous at the point (0,0)

(i) f(x,y) =

{
sin(x) cos(y)

x x 6= 0
cos(y) x = 0

.

Solution. The function f can be written as the product

f(x,y) = g(x)h(y)

where

g(x) =

{
sin(x)
x x 6= 0

1 x = 0
h(y) = cos(y).

The function h is clearly continuous at 0 and we can see that g is continuous at 0 using l’Hospital’s
rule:

lim
x→0

g(x) = lim
x→0

sin(x)

x
= lim
x→0

cos(x)

1
= cos(0) = 1.

Notice that we can use l’Hospital’s rule because both the numerator and the denominator of sin(x)
x

are converging to 0 as x goes to 0.

(ii) f(x,y) =

{
x3y
x4+y4 (x,y) 6= (0,0)

0 (x,y) = (0,0)
.

Solution. The restriction of this function to the line x = y has the form:

f(x,x) =
x4

x4 + x4
=

1

2

for x 6= 0 and f(0,0) = 0. Therefore, if we pick a sequence of points {(xi,xi)}i on the line x = y
which converges to (0,0) but (xi,xi) 6= (0,0), then f(xi,xi) =

1
2 does not converge to f(0,0) = 0.

This shows that f is not continuous at (0,0).
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4. For any m× n matrix A show that T : Rn → Rm, defined as follows is continuous.

T (x) = Ax.

Solution. We just have to show each coordinate function of T is continuous. Any such coordinate
function is a linear function from Rn to R. This reduces the problem to the case that n = 1. In this
case, the function has the form

T (x1,x2, . . . ,xn) = a1x1 + a2x2 + . . . anxn

Fix x = (x1,x2, . . . ,xn) and ε > 0 and take δ = ε
a·n where a is the maximum of the magnitudes of the

constants ai. For y = (y1,y2, . . . ,yn) ∈ Rn with

||(x1 − y1,x2 − y2, . . . ,xn − yn)|| ≤ δ =
ε

a · n

we have

|T (x1,x2, . . . ,xn)− T (y1,y2, . . . ,yn)| ≤|a1||x1 − y1|+ |a2||x2 − y2|+ . . . |an||xn − yn|
≤(|a1|+ |a2|+ . . . |an|)||(x1 − y1,x2 − y2, . . . ,xn − yn)||

<(|a1|+ |a2|+ . . . |an|)
ε

a · n
≤na ε

a · n
=ε.

In the second inequality, we use the inequality

|xi − yi| ≤ ||(x1 − y1,x2 − y2, . . . ,xn − yn)||
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5. Let U ⊂ Rn be an open set and f : U → Rm be a function.

(i) Show that if f is continuous then the inverse image f−1(V ) for any open subset V of Rm is an
open set.

Solution. Let x ∈ f−1(V ). This means that f(x) is a point of the open set V . Therefore, there is
ε > 0 such that Bε(f(x)) ⊂ V . Continuity of f implies that there is δ > 0 such that if y ∈ Bδ(x),
then f(y) ∈ Bε(f(x)). That is to say, Bδ(x) ⊂ f−1(Bε(f(x))). Since f−1(Bε(f(x))) ⊂ f−1(V ),
we conclude that Bδ(x) ⊂ f−1(V ), which means that x is an interior point of f−1(V ). This shows
that f−1(V ) is open.

(ii) Show that if for any open subset V of Rm, the inverse image set f−1(V ) is open, then f is
continuous.

Solution. Let x ∈ Rn and ε > 0 be given. Then Bε(f(x)) is an open subspace of Rm, and hence
f−1(Bε(f(x))) has to be open. Since x ∈ f−1(Bε(f(x))), openness of f−1(Bε(f(x))) implies that
there should exist δ > 0 such that Bδ(x) ⊂ f−1(Bε(f(x))). This in turn means that if y ∈ Bδ(x),
then f(y) ∈ Bε(f(x)). Thus f is continuous.
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6. Let V be a subspace of Rn and V ⊥ be its orthogonal complement. Let S1 = {v1,v2, . . . ,vk} is an
orthonormal basis for V .

(i) Show that any vector x in Rn, the vector

x− (x · v1)v1 − (x · v2)v2 − · · · − (x · vk)vk

belongs to V ⊥.

Solution. We want to show that the vector

y = x− (x · v1)v1 − (x · v2)v2 − · · · − (x · vk)vk

is in the orthogonal complement of V . Since {v1, . . . ,vk} is a basis for V , it suffices to show that
y is orthogonal to vi for any i:

y · vi =x · vi − (x · v1)(v1 · vi)− · · · − (x · vi−1)(vi−1 · vi)− (x · vi)(vi · vi)− . . . · · · − (x · vk)(vk · vi)
=x · vi − 0− · · · − 0− (x · vi)− 0− · · · − 0

=0.

(ii) Let S2 be an orthonormal basis for V ⊥. Use the last part to show that S1 ∪ S2 is a generating set
for Rn.

Solution. Suppose S2 = {v1,v2, . . . ,vl}. For an arbitrary vector x ∈ Rn, the last part implies that

y = x− (x · v1)v1 − (x · v2)v2 − · · · − (x · vk)vk

is an element of V ⊥ and hence it can be written as a linear combination of the elements of S2

y = b1u1 + · · ·+ blul.

Thus we have:

x =(x− y) + y

=((x · v1)v1 + (x · v2)v2 + · · ·+ (x · vk)vk) + (b1u1 + · · ·+ blul)

So x can be written as a linear combination of the elements of S1 ∪ S2.

(iii) Show that S1 ∪S2 is linearly independent. (Hint: Use the fact that any two vectors in S1 ∪S2 are
orthogonal to each other.)

Solution. Note that any element of S1 ∪ S2 has norm one and any two different elements are
orthogonal to each other. To show that S1 ∪ S2 is linearly independent, let

a1v1 + · · ·+ akuk + b1u1 + · · ·+ blul = 0.

The inner product of the above identity with vi implies that

ai(vi · vi) = 0 =⇒ ai = 0

and its inner product with uj implies that

bj(uj · uj) = 0 =⇒ bj = 0.

This proves the claim.
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(iv) Conclude that:
dim(V ) + dim(V ⊥) = n.

Solution. Since S1 = {v1,v2, . . . ,vk} is a basis for V and S2 = {u1,u2, . . . ,ul} , the dimensions
of V and V ⊥ are equal to k and l. The sum k+ l is equal to n because {v1,v2, . . . ,vk,u1,u2, . . . ,ul}
is a basis for Rn. Therefore, we have:

dim(V ) + dim(V ⊥) = n.
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