Problem Set 4

1. Suppose $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is the function given by:

$$
F\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{c}
4 x^{3} y^{2} \\
2 e^{x}+3 y \\
\frac{x}{y^{2}+1}
\end{array}\right]
$$

(i) Show that F is differentiable at any point $\mathbf{c}=\left(c_{1}, c_{2}\right) \in \mathbb{R}^{2}$.
(ii) Find the Jacobian of F at the point $\mathbf{c}=(-1,2)$.
(iii) Find the derivative $D_{\mathbf{c}} F(\mathbf{v})$ where $\mathbf{c}=(-1,2)$ and $\mathbf{v}=(-2,1)$.
2. In each of the following problems, find $D_{\mathbf{c}} F(\mathbf{v})$ using the given data.
(i) $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, F\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=G\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)+\left[\begin{array}{cc}1 & -3 \\ 0 & 2\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right], \mathbf{c}=\left[\begin{array}{l}5 \\ 3\end{array}\right], \mathbf{v}=\left[\begin{array}{l}1 \\ 2\end{array}\right], D_{\mathbf{c}} G(\mathbf{v})=$ $\left[\begin{array}{c}0 \\ -1\end{array}\right]$.
(ii) $F=\frac{G}{f}$ where $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $G: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, f(\mathbf{c})=-2, D_{\mathbf{c}} f(\mathbf{v})=-1, D_{\mathbf{c}} G=\left[\begin{array}{cc}1 & 0 \\ -2 & 1\end{array}\right]$, $G(\mathbf{c})=\left[\begin{array}{c}1 \\ -1\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{c}3 \\ -2\end{array}\right]$.

