Problem Set 5

1. In each part, use the chain rule to find the Jaobian of the function $F\circ G$ at the point ${\bf c}.$

(i)
$$F\left(\begin{bmatrix} x\\ y\\ z \end{bmatrix}\right) = x^2y + y^2z + z^2x, G(x) = \begin{bmatrix} e^x \sin(x)\\ \frac{x}{x^2+1}\\ \tan(x) \end{bmatrix}, \mathbf{c} = \frac{\pi}{4}.$$

(ii)
$$F\left(\begin{bmatrix}x\\y\\z\end{bmatrix}\right) = \begin{bmatrix}4x^2y^2 + \sin(xz)\\\frac{e^{xy}}{z}\end{bmatrix}, G\left(\begin{bmatrix}x\\y\end{bmatrix}\right) = \begin{bmatrix}2x+3y\\x^2+y^2\\xy^2+x^2y\end{bmatrix}, \mathbf{c} = \begin{bmatrix}1\\-2\end{bmatrix}.$$

2. Consider the function $F : \mathbb{R}^2 \to \mathbb{R}^2$

$$F(\left[\begin{array}{c} x\\y\end{array}\right]) = \left[\begin{array}{c} x^3 - 3xy^2\\3x^2y - y^3\end{array}\right]$$

(i) Show that F is a local diffeomorphism at any point other than the origin.

(ii) Suppose $\mathbf{c} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$, $\mathbf{b} \in \mathbb{R}^2$ is the point $F(\mathbf{c}) = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$, F is a diffeomorphism on the ball $B_r(\mathbf{c})$ and G is the inverse of $F|_{B_r(\mathbf{c})}$. Use the inverse function theorem to find $J_{\mathbf{b}}(G)$

- 3. Let $Q = \{(x,y) : x > 0, y > 0\} \subseteq \mathbb{R}^2$. The hyperbolic coordinate system on Q is defined by assigning to each point (x,y) new coordinates (u,v), where $u = \ln \sqrt{\frac{x}{y}}$ and $v = \sqrt{xy}$.
 - (i) Prove that the function $f: Q \to \mathbb{R}^2$ defined by f(x,y) = (u,v) is a local diffeomorphism at every point of Q.

(ii) Find the (global) inverse function $f^{-1}(u,v)$.

- 4. Let $f(x,y) = x^2 y(y-1)^2$, and let $V = \{(x,y) : f(x,y) = 0\}$.
 - (i) Sketch the set V in \mathbb{R}^2 . (You can use computer assistance; no need to show work.)

(ii) Use the Implicit Function Theorem to find all points on V for which V is, locally, the graph of a function $x = \varphi(y)$. Mark these points on your graph in part (a).

5. Suppose $F : \mathbb{R}^n \times \mathbb{R}^d \to \mathbb{R}^n$ and $\varphi : \mathbb{R}^d \to \mathbb{R}^n$ are continuously differentiable functions such that

$$F\left(\left[\begin{array}{c}\phi(y)\\y\end{array}\right]\right) = \vec{0}_n$$

for any $y \in \mathbb{R}^d$. Suppose also $\mathbf{c} = \begin{bmatrix} \mathbf{a} \\ \mathbf{b} \end{bmatrix} \in \mathbb{R}^n \times \mathbb{R}^d$ is a point such that $\mathbf{a} = \varphi(\mathbf{b})$ and if we present the Jacobian of F at \mathbf{c} as

$$J_{\mathbf{c}}(F) = \left[\begin{array}{c} L \stackrel{!}{\cdot} R \end{array} \right]$$

where $L \in M_{n \times n}(\mathbb{R})$ and $R \in M_{n \times d}(\mathbb{R})$, then L is an invertible matrix. Use the chain rule to show that:

$$J_{\mathbf{b}}(\varphi) = -L^{-1}R$$

(So this problem asks you to prove the second part of the implicit function theorem)

- 6. Suppose $U(r_1, r_2)$ is the ring given by the points in \mathbb{R}^2 which belong to the region between the circles of radii r_1 and r_2 centered at the origin.
 - (i) Sketch the region $U(r_1, r_2)$.

(ii) Find a diffeomorphism from U(2,3) to U(1,4).