Problem Set 5

1. In each part, use the chain rule to find the Jaobian of the function $F \circ G$ at the point \mathbf{c}.
(i) $F\left(\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right)=x^{2} y+y^{2} z+z^{2} x, G(x)=\left[\begin{array}{c}e^{x} \sin (x) \\ \frac{x}{x^{2}+1} \\ \tan (x)\end{array}\right], \mathbf{c}=\frac{\pi}{4}$.
(ii) $F\left(\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right)=\left[\begin{array}{c}4 x^{2} y^{2}+\sin (x z) \\ \frac{e^{x y}}{z}\end{array}\right], G\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{c}2 x+3 y \\ x^{2}+y^{2} \\ x y^{2}+x^{2} y\end{array}\right], \mathbf{c}=\left[\begin{array}{c}1 \\ -2\end{array}\right]$.
2. Consider the function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

$$
F\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{l}
x^{3}-3 x y^{2} \\
3 x^{2} y-y^{3}
\end{array}\right]
$$

(i) Show that F is a local diffeomorphism at any point other than the origin.
(ii) Suppose $\mathbf{c}=\left[\begin{array}{c}-1 \\ 1\end{array}\right], \mathbf{b} \in \mathbb{R}^{2}$ is the point $F(\mathbf{c})=\left[\begin{array}{l}2 \\ 2\end{array}\right], F$ is a diffeomorphism on the ball $B_{r}(\mathbf{c})$ and G is the inverse of $\left.F\right|_{B_{r}(\mathbf{c})}$. Use the inverse function theorem to find $J_{\mathbf{b}}(G)$
3. Let $Q=\{(x, y): x>0, y>0\} \subseteq \mathbb{R}^{2}$. The hyperbolic coordinate system on Q is defined by assigning to each point (x, y) new coordinates (u, v), where $u=\ln \sqrt{\frac{x}{y}}$ and $v=\sqrt{x y}$.
(i) Prove that the function $f: Q \rightarrow \mathbb{R}^{2}$ defined by $f(x, y)=(u, v)$ is a local diffeomorphism at every point of Q.
(ii) Find the (global) inverse function $f^{-1}(u, v)$.
4. Let $f(x, y)=x^{2}-y(y-1)^{2}$, and let $V=\{(x, y): f(x, y)=0\}$.
(i) Sketch the set V in \mathbb{R}^{2}. (You can use computer assistance; no need to show work.)
(ii) Use the Implicit Function Theorem to find all points on V for which V is, locally, the graph of a function $x=\varphi(y)$. Mark these points on your graph in part (a).
5. Suppose $F: \mathbb{R}^{n} \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{n}$ and $\varphi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{n}$ are continuously differentiable functions such that

$$
F\left(\left[\begin{array}{c}
\phi(y) \\
y
\end{array}\right]\right)=\overrightarrow{0}_{n}
$$

for any $y \in \mathbb{R}^{d}$. Suppose also $\mathbf{c}=\left[\begin{array}{l}\mathbf{a} \\ \mathbf{b}\end{array}\right] \in \mathbb{R}^{n} \times \mathbb{R}^{d}$ is a point such that $\mathbf{a}=\varphi(\mathbf{b})$ and if we present the Jacobian of F at \mathbf{c} as

$$
J_{\mathbf{c}}(F)=[L \vdots R]
$$

where $L \in M_{n \times n}(\mathbb{R})$ and $R \in M_{n \times d}(\mathbb{R})$, then L is an invertible matrix. Use the chain rule to show that:

$$
J_{\mathbf{b}}(\varphi)=-L^{-1} R .
$$

(So this problem asks you to prove the second part of the implicit function theorem)
6. Suppose $U\left(r_{1}, r_{2}\right)$ is the ring given by the points in \mathbb{R}^{2} which belong to the region between the circles of radii r_{1} and r_{2} centered at the origin.
(i) Sketch the region $U\left(r_{1}, r_{2}\right)$.
(ii) Find a diffeomorphism from $U(2,3)$ to $U(1,4)$.

