Problem Set 6

1. (i) Let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be the function $F\left(\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right)=e^{x} \sin (y)+\cos (x+y-2 z)$. Find the degree 3 Taylor polynomial of F at the point $\mathbf{c}=\left[\begin{array}{c}2 \\ \frac{\pi}{6} \\ 1\end{array}\right]$.

Solution. The Taylor polynomial of the sum of two functions is equal to the sum of Taylor polynomials. So we can compute the Taylor polynomials R_{3} and S_{3} of the functions $G(x, y, z)=$ $e^{x} \sin (y)$ and $H(x, y, z)=\cos (x+y-2 z)$ centered at \mathbf{c} separately and then add them up to find the Taylor polynomial T_{3} of F centered at \mathbf{c}. To start, we firstly compute partial derivatives of G with order at most three. Notice that G depends only on x and y and the partial derivative with respect to z and higher order partial derivatives which contain z are equal to zero. So we focus on partial derivatives with respect to x and y.

	at (x, y, z)	at c
G	$e^{x} \sin (y)$	$\frac{1}{2} e^{2}$
$\frac{\partial G}{\partial x}$	$e^{x} \sin (y)$	$\frac{1}{2} e^{2}$
$\frac{\partial G}{\partial y}$	$e^{x} \cos (y)$	$\frac{\sqrt{3}}{2} e^{2}$
$\frac{\partial^{2} G}{\partial x^{2}}$	$e^{x} \sin (y)$	$\frac{1}{2} e^{2}$
$\frac{\partial^{2} G}{\partial y^{2}}$	$-e^{x} \sin (y)$	$-\frac{1}{2} e^{2}$
$\frac{\partial^{2} G}{\partial x \partial y}$	$e^{x} \cos (y)$	$\frac{\sqrt{3}}{2} e^{2}$

	at (x, y, z)	at c
$\frac{\partial^{3} G}{\partial x^{3}}$	$e^{x} \sin (y)$	$\frac{1}{2} e^{2}$
$\frac{\partial^{3} G}{\partial x^{2} \partial y}$	$e^{x} \cos (y)$	$\frac{\sqrt{3}}{2} e^{2}$
$\frac{\partial^{3} G}{\partial x \partial y^{2}}$	$-e^{x} \sin (y)$	$-\frac{1}{2} e^{2}$
$\frac{\partial^{3} G}{\partial y^{3}}$	$e^{x} \cos (y)$	$-\frac{\sqrt{3}}{2} e^{2}$

Using general formula for the Taylor polynomials we can write
$R_{3}\left(\mathbf{c}+\left[\begin{array}{c}h \\ k \\ l\end{array}\right]\right)=\frac{1}{2} e^{2}+\frac{1}{2} e^{2} h+\frac{\sqrt{3}}{2} e^{2} k+\frac{1}{4} e^{2} h^{2}+\frac{\sqrt{3}}{2} e^{2} h k-\frac{1}{4} e^{2} k^{2}+\frac{1}{12} e^{2} h^{3}+\frac{\sqrt{3}}{4} e^{2} h^{2} k-\frac{1}{4} e^{2} h k^{2}-\frac{\sqrt{3}}{12} e^{2} k^{3}$.
To compute S_{3}, we note that the function G is composition of the linear function $x+y-2 z$. The Taylor polynomial S_{3}^{\prime} of the linear function $x+y-2 z$ at \mathbf{c} is given by itself and hence we have

$$
S_{3}^{\prime}\left(\mathbf{c}+\left[\begin{array}{c}
h \\
k \\
l
\end{array}\right]\right)=(2+h)+\left(\frac{\pi}{6}+k\right)-2(1+l)=\frac{\pi}{6}+h+k-2 l
$$

The degree three Taylor polynomial $S_{3}^{\prime \prime}$ of $\cos (x)$ centered at the point $\frac{\pi}{6}=2+\frac{\pi}{6}-2 \times 1$ is equal to

$$
S_{3}^{\prime \prime}\left(\frac{\pi}{6}+t\right)=\cos \left(\frac{\pi}{6}\right)-\sin \left(\frac{\pi}{6}\right) t-\frac{\cos \left(\frac{\pi}{6}\right)}{2} t^{2}+\frac{\sin \left(\frac{\pi}{6}\right)}{6} t^{3}=\frac{\sqrt{3}}{2}-\frac{1}{2} t-\frac{\sqrt{3}}{4} t^{2}+\frac{1}{12} t^{3}
$$

Therefore, the Taylor polynomial of the composed function G is given as

$$
S_{3}\left(\mathbf{c}+\left[\begin{array}{c}
h \\
k \\
l
\end{array}\right]\right)=\frac{\sqrt{3}}{2}-\frac{1}{2}(h+k-2 l)-\frac{\sqrt{3}}{4}(h+k-2 l)^{2}+\frac{1}{12}(h+k-2 l)^{3}
$$

By adding up $R_{3}\left(\mathbf{c}+\left[\begin{array}{c}h \\ k \\ l\end{array}\right]\right)$ and $S_{3}\left(\mathbf{c}+\left[\begin{array}{c}h \\ k \\ l\end{array}\right]\right)$ we obtain the desired Taylor polynomial $T_{3}(\mathbf{c}+$ $\left.\left[\begin{array}{l}h \\ k \\ l\end{array}\right]\right)$.
(ii) Find the degree 3 Taylor polynomial of $F: \mathbb{R}^{3} \rightarrow \mathbb{R}$ given by $F\left(\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right)=e^{x+2 y^{2}+3 z^{3}}$ centered at the point $\mathbf{c}=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$.

Solution. Since $G(x, y, z)=x+2 y^{2}+3 z^{3}$ is a polynomial of degree 3 , the degree 3 polynomial S_{3} of $x+2 y^{2}+3 z^{3}$ centered at the point \mathbf{c} is

$$
S_{3}\left(\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]\right)=x+2 y^{2}+3 z^{3}
$$

The degree Taylor polynomial R_{3} of $h(t)=e^{t}$ at the point $G(\mathbf{c})=0$ is equal to

$$
R_{3}(t)=1+t+\frac{t^{2}}{2}+\frac{t^{3}}{6}
$$

Thus the degree Taylor polynomial T_{3} of F at \mathbf{c} is given by composing R_{3} and S_{3} and then dropping terms of degree higher than 3.

$$
\begin{aligned}
& R_{3} \circ S_{3}\left(\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]\right)=R_{3}\left(x+2 y^{2}+3 z^{3}\right)=1+\left(x+2 y^{2}+3 z^{3}\right)+\frac{\left(x+2 y^{2}+3 z^{3}\right)^{2}}{2}+\frac{\left(x+2 y^{2}+3 z^{3}\right)^{3}}{6}= \\
& 1+\left(x+2 y^{2}+3 z^{3}\right)+\frac{\left(x+2 y^{2}\right)^{2}}{2}+\frac{x^{3}}{6}+o\left(\left\|\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]\right\|^{3}\right)=1+\left(x+2 y^{2}+3 z^{3}\right)+\frac{x^{2}+4 x y^{2}}{2}+\frac{x^{3}}{6}+o\left(\left\|\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]\right\|^{3}\right)
\end{aligned}
$$

Consequently, we have

$$
T_{3}\left(\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]\right)=1+x+\frac{x^{2}}{2}+2 y^{2}+\frac{x^{3}}{6}+\frac{4 x y^{2}}{2}+3 z^{3}
$$

2. Let $f(x, y)=x^{2}-y(y-1)^{2}$, and let $V=\{(x, y): f(x, y)=0\}$. In the last problem set, you studied the set V using the implicit function theorem.
(i) Show that in a neighborhood of $(0,0) \in V$, the set V can be described locally as the graph of a function $y=\phi(x)$. (Recall that last week you showed at any point in V, except $(0,0)$ and $(0,1)$, the set V can be described locally as the graph of a function $x=\psi(y)$.)

Solution.

$$
J_{(x, y)} f=\left[\begin{array}{ll}
2 x & -3 y^{2}+4 y-1
\end{array}\right] \Longrightarrow J_{(0,0)} f=\left[\begin{array}{ll}
0 & -1
\end{array}\right]
$$

Since the second entry of $J_{(0,0)} f$, which is $\frac{\partial f}{\partial y}(0,0)$ is non-zero, the implicit function theorem implies that the set V in a neighborhood of $(0,0)$ can be described as the graph of a function $y=\phi(x)$ with $\phi(0)=0$.
(ii) Find $\phi^{\prime}(0)$ for the function that you found in the first part.

Solution. The implicit function theorem implies that $\phi^{\prime}(0)=-L R^{-1}$, where R and L are given by

$$
J_{(0,0)} f=\left[\begin{array}{ll}
0 & -1
\end{array}\right]=\left[\begin{array}{ll}
L & R
\end{array}\right] .
$$

Therefore, $\phi^{\prime}(0)=0$.
(iii) Find the degree 3 Taylor polynomial of ϕ centered at 0 .

Solution. Since $\phi(0)=0$ and $\phi^{\prime}(0)=0$, the the degree 3 Taylor polynomial T_{3} of ϕ centered at 0 has the following form

$$
T_{3}(x)=a x^{2}+c x^{3}
$$

Using the properties of Taylor polynomials for functions defined implicitly, which we discussed in the class, we know that $f\left(x, T_{3}(x)\right)$ does not have any term of degree lower than 4 . That is to say:

$$
x^{2}-\left(a x^{2}+c x^{3}\right)\left(a x^{2}+c x^{3}-1\right)^{2}=o\left(x^{3}\right) \Longrightarrow(1-a) x^{2}-c x^{3}=o\left(x^{3}\right)
$$

This shows that $a=1$ and $c=0$.
3. Suppose $V \subset \mathbb{R}^{3}$ is the set of points (x, s, t) which satisfy the following equation

$$
F(x, s, t)=x^{3}+x s+t^{2}-2 .
$$

Notice that the point $(-1,1,2)$ is an element of V.
(i) Use the implicit function theorem to show that there are neighborhoods B of $(1,2)$ and W of -1 and a function $\varphi: B \rightarrow W$ such that $V \cap(W \times B)$ is given by the graph of the function ϕ :

$$
G_{\phi}=\{(\phi(s, t), s, t) \mid(s, t) \in B\}
$$

Solution.

$$
J_{(x, s, t)} F=\left[\begin{array}{lll}
3 x^{2}+s & x & 2 t
\end{array}\right] \Longrightarrow J_{(-1,1,2)} F=\left[\begin{array}{ccc}
4 & -1 & 4
\end{array}\right]
$$

Since the first entry of $J_{(-1,1,2)} F$, which is $\frac{\partial f}{\partial x}(-1,1,2)$ is non-zero, the implicit function theorem implies that the set V in a neighborhood of $(-1,1,2)$ can be described as the graph of a function $x=\phi(s, t)$ with $\phi(1,2)=-1$.
(ii) Find the degree 2 Taylor polynomial of φ centered at $(1,2)$.

Solution. The implicit function theorem implies that $J_{(1,2)} \phi=-L^{-1} R$, where R and L are given by

$$
J_{(-1,1,2)} F=\left[\begin{array}{lll}
4 & -1 & 4
\end{array}\right]=\left[\begin{array}{ll}
L & R
\end{array}\right] \Longrightarrow L=[4], R=\left[\begin{array}{ll}
-1 & 4
\end{array}\right] .
$$

Therefore, $J_{(1,2)} \phi=\left[\begin{array}{cc}\frac{1}{4} & -1\end{array}\right]$.
The computation of $\phi(1,2)$ and $J_{(1,2)} \phi$ shows that the degree 2 Taylor polynomial T_{2} of φ centered at $(1,2)$ has the following form.

$$
T_{2}(1+h, 2+k)=-1+\frac{1}{4} h-k+a h^{2}+b h k+c k^{2}
$$

In order to determine a, b and c, we use the fact that if we plug in $T_{2}(1+h, 2+k)$ for $x, 1+h$ for s and $2+k$ for t in $F(x, s, t)=x^{3}+x s+t^{2}-2$, there does not exists in any term in terms of h and k with degree less than 2

$$
\begin{aligned}
& F\left(T_{2}(1+h, 2+k), 1+h, 2+k\right)= \\
& \quad=\left(-1+\frac{1}{4} h-k+a h^{2}+b h k+c k^{2}\right)^{3}+\left(-1+\frac{1}{4} h-k+a h^{2}+b h k+c k^{2}\right)(1+h)+(2+k)^{2}-2
\end{aligned}
$$

After dropping terms with degree higher than 2, we obtain
$-3\left(\frac{1}{4} h-k\right)^{2}+4\left(a h^{2}+b h k+c k^{2}\right)+h\left(\frac{1}{4} h-k\right)+k^{2}=0 \Longrightarrow\left(\frac{1}{16}+4 a\right) h^{2}+\left(\frac{1}{2}+4 b\right) h k+(-2+4 c) k^{2}=0$
The last identity shows that $a=-\frac{1}{64}, b=-\frac{1}{8}$ and $c=\frac{1}{2}$.
4. Suppose $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ is a C^{1} function and $V=\left\{\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \in \mathbb{R}^{3}: F\left(\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right)=0\right\}$, and for $\mathbf{c} \in V$

$$
J_{\vec{c}}(F)=\left[\begin{array}{ccc}
4 & 5 & -6 \\
-6 & 8 & 9
\end{array}\right] .
$$

(i) Which variables (out of x, y, and z) can be chosen as the free variable so that the implicit function theorem implies that at \vec{c}, V is locally the graph of a function of the free variable? Explain briefly.

Solution. The 2×2 matrices

$$
\left[\begin{array}{cc}
4 & 5 \\
-6 & 8
\end{array}\right], \quad\left[\begin{array}{cc}
5 & -6 \\
8 & 9
\end{array}\right]
$$

obtained by removing the last column (corresponding to the variable z) and the first column (corresponding to the variable x) from $J_{\vec{c}}(F)$ are invertible because

$$
\operatorname{det}\left[\begin{array}{cc}
4 & 5 \\
-6 & 8
\end{array}\right]=62 \neq 0, \quad\left[\begin{array}{cc}
5 & -6 \\
8 & 9
\end{array}\right]=93 \neq 0
$$

Therefore, by the implicit function theorem, we may use x and z as the free variables so that V in a neighborhood of c can be describsed as the graph of a function of the variable x or z. However, we cannot use the implicit function theorem for the variable y because the matrix obtained from $J_{\vec{c}}(F)$ by removing the second column (corresponding to the variable y) is

$$
\left[\begin{array}{cc}
4 & -6 \\
-6 & 9
\end{array}\right]
$$

which has vanishing determinant and hence it is not invertible.
(ii) Give an example of a 2×3 matrix A such that if $J_{\vec{c}}(F)=A$ in the setup above, then exactly one of the variables can be free, but not either of the other two. Explain briefly.

Solution. Let

$$
A=\left[\begin{array}{lll}
1 & 2 & 0 \\
1 & 3 & 0
\end{array}\right]
$$

The 2×2 matrix

$$
\left[\begin{array}{ll}
1 & 2 \\
1 & 3
\end{array}\right]
$$

obtained from removing the last column of A is invertible because its determinant is equal to 1. Thus we may use the variable z to represent V in a neighborhood of c as the graph of a function of z. However, we may not use the other two variables because the matrices obtained from removing the first or the second column are not invertible:

$$
\left[\begin{array}{ll}
2 & 0 \\
3 & 0
\end{array}\right], \quad\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right]
$$

5. Suppose $P: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is the polynomial $p(\vec{h})=\vec{h}^{\alpha}$ for $\alpha \in \mathbb{N}^{3}$. To be more specific, if $\vec{h}=\left[\begin{array}{l}h_{1} \\ h_{2} \\ h_{3}\end{array}\right]$ and $\alpha=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$, then $p(\vec{h})=h_{1}^{\alpha_{1}} h_{2}^{\alpha_{2}} h_{3}^{\alpha_{3}}$. Find partial derivatives of arbitrary oder of the function p at the point $\vec{h}=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$.
Solution. We have
$\frac{\partial^{i+j+k} p}{\partial^{i} h_{1} \partial^{j} h_{2} \partial^{k} h_{3}}(\vec{h})=\alpha_{1}\left(\alpha_{1}-1\right) \ldots\left(\alpha_{1}-i+1\right) \alpha_{2}\left(\alpha_{2}-1\right) \ldots\left(\alpha_{2}-j+1\right) \alpha_{3}\left(\alpha_{3}-1\right) \ldots\left(\alpha_{3}-k+1\right) h_{1}^{\alpha_{1}-i} h_{2}^{\alpha_{2}-j} h_{3}^{\alpha_{3}-k}$.
From this it can be easily seen that

$$
\frac{\partial^{i+j+k} p}{\partial^{i} h_{1} \partial^{j} h_{2} \partial^{k} h_{3}}\left(\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right)=\left\{\begin{array}{ll}
\alpha_{1}!\alpha_{2}!\alpha_{3}! & i=\alpha_{1}, j=\alpha_{2}, k=\alpha_{k} \\
0 & \text { otherwise }
\end{array} .\right.
$$

6. Suppose $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ are C^{∞} functions. Suppose $F\left(\left[\begin{array}{l}0 \\ 0\end{array}\right]\right)=0$. Suppose the degree 2 Taylor polynomial of F at the point $\left[\begin{array}{l}0 \\ 0\end{array}\right]$ is

$$
T_{2}\left(\left[\begin{array}{l}
h \\
k
\end{array}\right]\right)=a_{1} h+a_{2} k+b_{1} h^{2}+b_{2} h k+b_{3} k^{2}
$$

and the degree 2 Taylor polynomial of g at 0 is

$$
S_{2}(l)=c+d l+e l^{2}
$$

(i) Determine the constants a_{i}, b_{j}, c, d and e in terms of partial derivatives of F at $\left[\begin{array}{l}0 \\ 0\end{array}\right]$ and the derivatives of g at 0 .

Solution. The formulas for Taylor polynomials imply that

$$
a_{1}=\frac{\partial F}{\partial x}(0,0), \quad a_{2}=\frac{\partial F}{\partial y}(0,0), \quad b_{1}=\frac{1}{2} \frac{\partial^{2} F}{\partial x^{2}}(0,0), \quad b_{2}=\frac{\partial^{2} F}{\partial x \partial x}(0,0), \quad b_{3}=\frac{1}{2} \frac{\partial^{2} F}{\partial y^{2}}(0,0)
$$

and

$$
c=g(0), \quad d=g^{\prime}(0), \quad e=\frac{1}{2} g^{\prime \prime}(0)
$$

(ii) Suppose R is the polynomial of degree 2 obtained by forming the composition $S_{2} \circ T_{2}$ and then erasing the terms of degree greater than 2. Use your answer to the first part to determine R in terms of the partial derivatives of F at $\left[\begin{array}{l}0 \\ 0\end{array}\right]$ and the derivatives of g at 0 .

Solution.

$$
\begin{gathered}
S_{2} \circ T_{2}\left(\left[\begin{array}{c}
h \\
k
\end{array}\right]\right)=c+d\left(a_{1} h+a_{2} k+b_{1} h^{2}+b_{2} h k+b_{3} k^{2}\right)+e\left(a_{1} h+a_{2} k+b_{1} h^{2}+b_{2} h k+b_{3} k^{2}\right)^{2} \\
\Longrightarrow R_{2}\left(\left[\begin{array}{c}
h \\
k
\end{array}\right]\right)=c+\left(d a_{1}\right) h+\left(d a_{2}\right) k+\left(d b_{1}+e a_{1}^{2}\right) h^{2}+\left(d b_{2}+2 e a_{1} a_{2}\right) h k+\left(d b_{3}+e a_{2}^{2}\right) k^{2}= \\
\quad=g(0)+\left(g^{\prime}(0) \frac{\partial F}{\partial x}(0,0)\right) h+\left(g^{\prime}(0) \frac{\partial F}{\partial y}(0,0)\right) k+\left(g^{\prime}(0) \frac{1}{2} \frac{\partial^{2} F}{\partial x^{2}}(0,0)+e \frac{\partial F}{\partial x}(0,0)^{2}\right) h^{2}+ \\
\quad+\left(g^{\prime}(0) \frac{\partial^{2} F}{\partial x \partial y}(0,0)+2 e \frac{\partial F}{\partial x}(0,0) \frac{\partial F}{\partial y}(0,0)\right) h k+\left(\frac{1}{2} g^{\prime}(0) \frac{\partial^{2} F}{\partial y^{2}}(0,0)+e \frac{\partial F}{\partial y}(0,0)^{2}\right) k^{2}
\end{gathered}
$$

(iii) Show that R is equal to the degree 2 Taylor polynomial of the composed function $g \circ F: \mathbb{R}^{2} \rightarrow \mathbb{R}$. (Hint: To show this you have to relate the coefficients of R to the partial derivatives of $g \circ F$ at
$\left[\begin{array}{l}0 \\ 0\end{array}\right]$. Use chain rule (for one variable functions) to establish this relation.)
Notice that this is a special case of a general result about Taylor polynomials of composed functions that we stated in the class. The proof of the general case is similar.

Solution. Clearly we have

$$
g \circ F\left(\left[\begin{array}{l}
0 \tag{1}\\
0
\end{array}\right]\right)=g(0)
$$

This shows that the constant term in R_{2} matches with the constant term in the degree 2 Taylor polynomial of $g \circ F$ centered at $\left[\left[\begin{array}{l}0 \\ 0\end{array}\right]\right]$.
Using chain rule we may write:

$$
\frac{\partial(g \circ F)}{\partial x}(x, y)=g^{\prime}(F(x, y)) \frac{\partial F}{\partial x}(x, y), \quad \frac{\partial(g \circ F)}{\partial y}(x, y)=g^{\prime}(F(x, y)) \frac{\partial F}{\partial y}(x, y)
$$

By plugging in $(0,0)$ for (x, y) in the above identities we can see that the coefficient of h and k in R_{2} and the degree 2 Taylor polynomial of $g \circ F$ centered at $\left[\left[\begin{array}{l}0 \\ 0\end{array}\right]\right.$ match.

By differentiating the two identities in (1) and applying the product rule and the chain rule we obtain

$$
\begin{gathered}
\frac{\partial^{2}(g \circ F)}{\partial x^{2}}(x, y)=g^{\prime}(F(x, y)) \frac{\partial^{2} F}{\partial x^{2}}(x, y)+g^{\prime \prime}(F(x, y))\left(\frac{\partial F}{\partial x}(x, y)\right)^{2} \\
\frac{\partial^{2}(g \circ F)}{\partial x \partial y}(x, y)=g^{\prime}(F(x, y)) \frac{\partial^{2} F}{\partial x \partial y}(x, y)+g^{\prime \prime}(F(x, y)) \frac{\partial F}{\partial x}(x, y) \frac{\partial F}{\partial y}(x, y)
\end{gathered}
$$

and

$$
\frac{\partial^{2}(g \circ F)}{\partial y^{2}}(x, y)=g^{\prime}(F(x, y)) \frac{\partial^{2} F}{\partial y^{2}}(x, y)+g^{\prime \prime}(F(x, y))\left(\frac{\partial F}{\partial y}(x, y)\right)^{2}
$$

By plugging in $(0,0)$ for (x, y) in the above identities we can see that the coefficient of h^{2}, hk and k^{2} in R_{2} and the degree 2 Taylor polynomial of $g \circ F$ centered at $\left[\left[\begin{array}{l}0 \\ 0\end{array}\right]\right]$ match.

