
Problem Set 6

1. (i) Let F : R3 → R be the function F

 x
y
z

 = ex sin(y) + cos(x + y − 2z). Find the degree 3

Taylor polynomial of F at the point c =

 2
π
6
1

.

Solution. The Taylor polynomial of the sum of two functions is equal to the sum of Taylor
polynomials. So we can compute the Taylor polynomials R3 and S3 of the functions G(x,y,z) =
ex sin(y) and H(x,y,z) = cos(x + y − 2z) centered at c separately and then add them up to find
the Taylor polynomial T3 of F centered at c. To start, we firstly compute partial derivatives of G
with order at most three. Notice that G depends only on x and y and the partial derivative with
respect to z and higher order partial derivatives which contain z are equal to zero. So we focus on
partial derivatives with respect to x and y.
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Using general formula for the Taylor polynomials we can write
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To compute S3, we note that the function G is composition of the linear function x+ y− 2z. The
Taylor polynomial S′3 of the linear function x+ y − 2z at c is given by itself and hence we have
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The degree three Taylor polynomial S′′3 of cos(x) centered at the point π
6 = 2 + π
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Therefore, the Taylor polynomial of the composed function G is given as
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By adding up R3(c+

 h
k
l

) and S3(c+

 h
k
l

) we obtain the desired Taylor polynomial T3(c+ h
k
l

).

(ii) Find the degree 3 Taylor polynomial of F : R3 → R given by F

 x
y
z

 = ex+2y2+3z3 centered

at the point c =

 0
0
0

.

Solution. Since G(x,y,z) = x+ 2y2 + 3z3 is a polynomial of degree 3, the degree 3 polynomial S3

of x+ 2y2 + 3z3 centered at the point c is

S3(

 x
y
z

) = x+ 2y2 + 3z3.

The degree Taylor polynomial R3 of h(t) = et at the point G(c) = 0 is equal to

R3(t) = 1 + t+
t2

2
+
t3

6
.

Thus the degree Taylor polynomial T3 of F at c is given by composing R3 and S3 and then dropping
terms of degree higher than 3.
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Consequently, we have
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2. Let f(x,y) = x2− y(y− 1)2, and let V = {(x,y) : f(x,y) = 0}. In the last problem set, you studied the
set V using the implicit function theorem.

(i) Show that in a neighborhood of (0,0) ∈ V , the set V can be described locally as the graph of a
function y = φ(x). (Recall that last week you showed at any point in V , except (0,0) and (0,1),
the set V can be described locally as the graph of a function x = ψ(y).)

Solution.
J(x,y)f =

[
2x −3y2 + 4y − 1

]
=⇒ J(0,0)f =

[
0 −1

]
Since the second entry of J(0,0)f , which is ∂f

∂y (0,0) is non-zero, the implicit function theorem

implies that the set V in a neighborhood of (0,0) can be described as the graph of a function
y = φ(x) with φ(0) = 0.

(ii) Find φ′(0) for the function that you found in the first part.

Solution. The implicit function theorem implies that φ′(0) = −LR−1, where R and L are given
by

J(0,0)f =
[

0 −1
]

=
[
L R

]
.

Therefore, φ′(0) = 0.

(iii) Find the degree 3 Taylor polynomial of φ centered at 0.

Solution. Since φ(0) = 0 and φ′(0) = 0, the the degree 3 Taylor polynomial T3 of φ centered at
0 has the following form

T3(x) = ax2 + cx3.

Using the properties of Taylor polynomials for functions defined implicitly, which we discussed in
the class, we know that f(x,T3(x)) does not have any term of degree lower than 4. That is to say:

x2 − (ax2 + cx3)(ax2 + cx3 − 1)2 = o(x3) =⇒ (1− a)x2 − cx3 = o(x3)

This shows that a = 1 and c = 0.
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3. Suppose V ⊂ R3 is the set of points (x,s,t) which satisfy the following equation

F (x,s,t) = x3 + xs+ t2 − 2.

Notice that the point (−1,1,2) is an element of V .

(i) Use the implicit function theorem to show that there are neighborhoods B of (1,2) and W of −1
and a function ϕ : B →W such that V ∩ (W ×B) is given by the graph of the function φ:

Gφ = {(φ(s,t),s,t) | (s,t) ∈ B}

Solution.
J(x,s,t)F =

[
3x2 + s x 2t

]
=⇒ J(−1,1,2)F =

[
4 −1 4

]
Since the first entry of J(−1,1,2)F , which is ∂f

∂x (−1,1,2) is non-zero, the implicit function theorem
implies that the set V in a neighborhood of (−1,1,2) can be described as the graph of a function
x = φ(s,t) with φ(1,2) = −1.

(ii) Find the degree 2 Taylor polynomial of ϕ centered at (1,2).

Solution. The implicit function theorem implies that J(1,2)φ = −L−1R, where R and L are given
by

J(−1,1,2)F =
[

4 −1 4
]

=
[
L R

]
=⇒ L =

[
4
]
, R =

[
−1 4

]
.

Therefore, J(1,2)φ =
[

1
4 −1

]
.

The computation of φ(1,2) and J(1,2)φ shows that the degree 2 Taylor polynomial T2 of ϕ centered
at (1,2) has the following form.

T2(1 + h,2 + k) = −1 +
1

4
h− k + ah2 + bhk + ck2.

In order to determine a, b and c, we use the fact that if we plug in T2(1 + h,2 + k) for x, 1 + h
for s and 2 + k for t in F (x,s,t) = x3 + xs+ t2 − 2, there does not exists in any term in terms of
h and k with degree less than 2

F (T2(1 + h,2 + k),1 + h,2 + k) =

= (−1 +
1

4
h− k+ah2 + bhk+ ck2)3 + (−1 +

1

4
h− k+ah2 + bhk+ ck2)(1 +h) + (2 + k)2− 2

After dropping terms with degree higher than 2, we obtain

−3(
1

4
h−k)2+4(ah2+bhk+ck2)+h(

1

4
h−k)+k2 = 0 =⇒ (

1

16
+4a)h2+(

1

2
+4b)hk+(−2+4c)k2 = 0

The last identity shows that a = − 1
64 , b = − 1

8 and c = 1
2 .
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4. Suppose F : R3 → R2 is a C1 function and V = {

 x
y
z

 ∈ R3 : F

 x
y
z

 = 0}, and for c ∈ V

J~c(F ) =

[
4 5 −6
−6 8 9

]
.

(i) Which variables (out of x, y, and z) can be chosen as the free variable so that the implicit function
theorem implies that at ~c, V is locally the graph of a function of the free variable? Explain briefly.

Solution. The 2× 2 matrices [
4 5
−6 8

]
,

[
5 −6
8 9

]
obtained by removing the last column (corresponding to the variable z) and the first column (cor-
responding to the variable x) from J~c(F ) are invertible because

det

[
4 5
−6 8

]
= 62 6= 0,

[
5 −6
8 9

]
= 93 6= 0.

Therefore, by the implicit function theorem, we may use x and z as the free variables so that V in
a neighborhood of c can be describsed as the graph of a function of the variable x or z. However,
we cannot use the implicit function theorem for the variable y because the matrix obtained from
J~c(F ) by removing the second column (corresponding to the variable y) is[

4 −6
−6 9

]
which has vanishing determinant and hence it is not invertible.

(ii) Give an example of a 2× 3 matrix A such that if J~c(F ) = A in the setup above, then exactly one
of the variables can be free, but not either of the other two. Explain briefly.

Solution. Let

A =

[
1 2 0
1 3 0

]
The 2× 2 matrix [

1 2
1 3

]
obtained from removing the last column of A is invertible because its determinant is equal to 1.
Thus we may use the variable z to represent V in a neighborhood of c as the graph of a function of
z. However, we may not use the other two variables because the matrices obtained from removing
the first or the second column are not invertible:[

2 0
3 0

]
,

[
1 0
1 0

]
.
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5. Suppose P : R3 → R is the polynomial p(~h) = ~hα for α ∈ N3. To be more specific, if ~h =

 h1
h2
h3

 and

α = (α1,α2,α3), then p(~h) = hα1
1 hα2

2 hα3
3 . Find partial derivatives of arbitrary oder of the function p at

the point ~h =

 0
0
0

.

Solution. We have

∂i+j+kp

∂ih1∂jh2∂kh3
(~h) = α1(α1−1) . . . (α1−i+1)α2(α2−1) . . . (α2−j+1)α3(α3−1) . . . (α3−k+1)hα1−i

1 hα2−j
2 hα3−k

3 .

From this it can be easily seen that

∂i+j+kp

∂ih1∂jh2∂kh3
(

 0
0
0

) =

{
α1!α2!α3! i = α1, j = α2,k = αk
0 otherwise

.
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6. Suppose F : R2 → R and g : R → R are C∞ functions. Suppose F (

[
0
0

]
) = 0. Suppose the degree 2

Taylor polynomial of F at the point

[
0
0

]
is

T2(

[
h
k

]
) = a1h+ a2k + b1h

2 + b2hk + b3k
2

and the degree 2 Taylor polynomial of g at 0 is

S2(l) = c+ dl + el2.

(i) Determine the constants ai, bj, c, d and e in terms of partial derivatives of F at

[
0
0

]
and the

derivatives of g at 0.

Solution. The formulas for Taylor polynomials imply that

a1 =
∂F

∂x
(0,0), a2 =

∂F

∂y
(0,0), b1 =

1

2

∂2F

∂x2
(0,0), b2 =

∂2F

∂x∂x
(0,0), b3 =

1

2

∂2F

∂y2
(0,0),

and

c = g(0), d = g′(0), e =
1

2
g′′(0).

(ii) Suppose R is the polynomial of degree 2 obtained by forming the composition S2 ◦ T2 and then
erasing the terms of degree greater than 2. Use your answer to the first part to determine R in

terms of the partial derivatives of F at

[
0
0

]
and the derivatives of g at 0.

Solution.

S2 ◦ T2(

[
h
k

]
) = c+ d(a1h+ a2k + b1h

2 + b2hk + b3k
2) + e(a1h+ a2k + b1h

2 + b2hk + b3k
2)2

=⇒ R2(

[
h
k

]
) = c+ (da1)h+ (da2)k + (db1 + ea21)h2 + (db2 + 2ea1a2)hk + (db3 + ea22)k2 =

= g(0) + (g′(0)
∂F

∂x
(0,0))h+ (g′(0)

∂F

∂y
(0,0))k + (g′(0)

1

2

∂2F

∂x2
(0,0) + e

∂F

∂x
(0,0)2)h2+

+(g′(0)
∂2F

∂x∂y
(0,0) + 2e

∂F

∂x
(0,0)

∂F

∂y
(0,0))hk + (

1

2
g′(0)

∂2F

∂y2
(0,0) + e

∂F

∂y
(0,0)2)k2

(iii) Show that R is equal to the degree 2 Taylor polynomial of the composed function g ◦ F : R2 → R.
(Hint: To show this you have to relate the coefficients of R to the partial derivatives of g ◦ F at[

0
0

]
. Use chain rule (for one variable functions) to establish this relation.)

Notice that this is a special case of a general result about Taylor polynomials of composed functions
that we stated in the class. The proof of the general case is similar.

Solution. Clearly we have

g ◦ F (

[
0
0

]
) = g(0). (1)

7



This shows that the constant term in R2 matches with the constant term in the degree 2 Taylor

polynomial of g ◦ F centered at [

[
0
0

]
].

Using chain rule we may write:

∂(g ◦ F )

∂x
(x,y) = g′(F (x,y))

∂F

∂x
(x,y),

∂(g ◦ F )

∂y
(x,y) = g′(F (x,y))

∂F

∂y
(x,y).

By plugging in (0,0) for (x,y) in the above identities we can see that the coefficient of h and k in

R2 and the degree 2 Taylor polynomial of g ◦ F centered at [

[
0
0

]
] match.

By differentiating the two identities in (1) and applying the product rule and the chain rule we
obtain

∂2(g ◦ F )

∂x2
(x,y) = g′(F (x,y))

∂2F

∂x2
(x,y) + g′′(F (x,y))(

∂F

∂x
(x,y))2,

∂2(g ◦ F )

∂x∂y
(x,y) = g′(F (x,y))

∂2F

∂x∂y
(x,y) + g′′(F (x,y))

∂F

∂x
(x,y)

∂F

∂y
(x,y)

and
∂2(g ◦ F )

∂y2
(x,y) = g′(F (x,y))

∂2F

∂y2
(x,y) + g′′(F (x,y))(

∂F

∂y
(x,y))2.

By plugging in (0,0) for (x,y) in the above identities we can see that the coefficient of h2, hk and

k2 in R2 and the degree 2 Taylor polynomial of g ◦ F centered at [

[
0
0

]
] match.
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