Problem Set 6

1. (i) Let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be the function $F\left(\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right)=e^{x} \sin (y)+\cos (x+y-2 z)$. Find the degree 3 Taylor polynomial of F at the point $\mathbf{c}=\left[\begin{array}{c}2 \\ \frac{\pi}{6} \\ 1\end{array}\right]$.
(ii) Find the degree 3 Taylor polynomial of $F: \mathbb{R}^{3} \rightarrow \mathbb{R}$ given by $F\left(\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right)=e^{x+2 y^{2}+3 z^{3}}$ centered at the point $\mathbf{c}=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$.
2. Let $f(x, y)=x^{2}-y(y-1)^{2}$, and let $V=\{(x, y): f(x, y)=0\}$. In the last problem set, you studied the set V using the implicit function theorem.
(i) Show that in a neighborhood of $(0,0) \in V$, the set V can be described locally as the graph of a function $y=\phi(x)$. (Recall that last week you showed at any point in V, except $(0,0)$ and $(0,1)$, the set V can be described locally as the graph of a function $x=\psi(y)$.)
(ii) Find $\phi^{\prime}(0)$ for the function that you found in the first part.
(iii) Find the degree 3 Taylor polynomial of ϕ centered at 0 .
3. Suppose $V \subset \mathbb{R}^{3}$ is the set of points (x, s, t) which satisfy the following equation

$$
F(x, s, t)=x^{3}+x s+t^{2}-2 .
$$

Notice that the point $(-1,1,2)$ is an element of V.
(i) Use the implicit function theorem to show that there are neighborhoods B of $(1,2)$ and W of -1 and a function $\varphi: B \rightarrow W$ such that $V \cap(W \times B)$ is given by the graph of the function ϕ :

$$
G_{\phi}=\{(\phi(s, t), s, t) \mid(s, t) \in B\}
$$

(ii) Find the degree 2 Taylor polynomial of φ centered at $(1,2)$.
4. Suppose $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ is a C^{1} function and $V=\left\{\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \in \mathbb{R}^{3}: F\left(\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right)=0\right\}$, and for $\mathbf{c} \in V$

$$
J_{\vec{c}}(F)=\left[\begin{array}{ccc}
4 & 5 & -6 \\
-6 & 8 & 9
\end{array}\right] .
$$

(i) Which variables (out of x, y, and z) can be chosen as the free variable so that the implicit function theorem implies that at \vec{c}, V is locally the graph of a function of the free variable? Explain briefly.
(ii) Give an example of a 2×3 matrix A such that if $J_{\vec{c}}(F)=A$ in the setup above, then exactly one of the variables can be free, but not either of the other two. Explain briefly.
5. Suppose $P: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is the polynomial $p(\vec{h})=\vec{h}^{\alpha}$ for $\alpha \in \mathbb{N}^{3}$. To be more specific, if $\vec{h}=\left[\begin{array}{l}h_{1} \\ h_{2} \\ h_{3}\end{array}\right]$ and $\alpha=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$, then $p(\vec{h})=h_{1}^{\alpha_{1}} h_{2}^{\alpha_{2}} h_{3}^{\alpha_{3}}$. Find partial derivatives of arbitrary oder of the function p at the point $\vec{h}=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$.
6. Suppose $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ are C^{∞} functions. Suppose $F\left(\left[\begin{array}{l}0 \\ 0\end{array}\right]\right)=0$. Suppose the degree 2 Taylor polynomial of F at the point $\left[\begin{array}{l}0 \\ 0\end{array}\right]$ is

$$
T_{2}\left(\left[\begin{array}{l}
h \\
k
\end{array}\right]\right)=a_{1} h+a_{2} k+b_{1} h^{2}+b_{2} h k+b_{3} k^{2}
$$

and the degree 2 Taylor polynomial of g at 0 is

$$
S_{2}(l)=c+d l+e l^{2} .
$$

(i) Determine the constants a_{i}, b_{j}, c, d and e in terms of partial derivatives of F at $\left[\begin{array}{l}0 \\ 0\end{array}\right]$ and the derivatives of g at 0 .
(ii) Suppose R is the polynomial of degree 2 obtained by forming the composition $S_{2} \circ T_{2}$ and then erasing the terms of degree greater than 2 . Use your answer to the first part to determine R in terms of the partial derivatives of F at $\left[\begin{array}{l}0 \\ 0\end{array}\right]$ and the derivatives of g at 0 .
(iii) Show that R is equal to the degree 2 Taylor polynomial of the composed function $g \circ F: \mathbb{R}^{2} \rightarrow \mathbb{R}$. (Hint: To show this you have to relate the coefficients of R to the partial derivatives of $g \circ F$ at $\left[\begin{array}{l}0 \\ 0\end{array}\right]$. Use chain rule (for one variable functions) to establish this relation.)

Notice that this is a special case of a general result about Taylor polynomials of composed functions that we stated in the class. The proof of the general case is similar.

