Problem Set 7

If you need some practice problems, you can work on problems 18-24 in Section 3.9 of the textbook. Section 3.10 has solutions to these problems. Going over your notes and working on these practice problems would help you to get a review of the materials relevant for this problem set.

1. Diagonalize the following quadratic forms. Then determine the rank and signature of each of them.
(i) $Q(x, y)=x^{2}+3 x y+3 y^{2}$.
(ii) $Q(x, y, z)=x y+y z+z x$.
(iii) $Q(x, y, z)=3 x^{2}+3 y^{2}+6 x z-2 y z$.
2. The function $f(x, y)=x^{3}-x^{2}+y^{2}$ has two critical points. Find both, and classify each as a local maximum, local minimum, or saddle point.
3. Let $f(x, y)=x^{3}+3 x y+y^{3}$. Find all critical points of f, and classify each as a local minimum, local maximum, or saddle point.
4. Let $f(x, y, z)=x^{2}+y^{2}+z^{2}+x y z$.
(i) Show that $(0,0,0),(-2,-2,-2)$, and $(-2,2,2)$ are critical points of f.
(ii) Classify each of the points in part (i) as a local minimum, local maximum, or saddle point.
5. Consider the general quadratic form $Q(x, y)=a x^{2}+b x y+c y^{2}$, and assume $a>0$ and $c>0$. Find (in terms of a and c) a value b_{0} such that Q has signature $(2,0)$ if $|b|<b_{0}$, and Q has signature $(1,1)$ if $|b|>b_{0}$. Prove your answer.
