Problem Set 8

1. Let $M=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}=z^{2}, z>0\right\}$.
(i) Show that M is a smooth manifold.
(ii) What is the dimension of M ?
(iii) Find the tangent space of M at the point $(3,4,5)$.
2. Let

$$
M=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=1 \text { and } x^{3}+y^{3}+z^{3}+x y z=0\right\}
$$

(i) Show that M is a smooth manifold.
(ii) What is the dimension of M ?
(iii) Find the tangent space of M at the point $\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}, 0\right)$.
3. Let $U=\left\{(s, t) \in \mathbb{R}^{2}: 0<s<\pi, 0<t<2 \pi\right\}$. Define $\phi: U \rightarrow \mathbb{R}^{3}$ by

$$
\phi(s, t)=(\sin (s) \cos (t), \sin (s) \sin (t), \cos (s))
$$

and let $M=\phi(U)$.
(i) Give a simple geometric description of M.
(ii) Use the parameterization ϕ to show that M is a smooth manifold. (Be sure to use the parameterization and the corresponding theorem (p. 174 of the textbook, for reference). Do not just redefine M using your answer to part (a).)
4. Let

$$
S=\left\{(r, \theta):-\frac{1}{2}<r<\frac{1}{2}, 0 \leq \theta<2 \pi\right\}
$$

and

$$
S^{\prime}=\left\{(r, \theta):-\frac{1}{2}<r<\frac{1}{2}, 0<\theta<2 \pi\right\}
$$

(so S^{\prime} is the interior of S). Define $\gamma: S \rightarrow \mathbb{R}^{3}$ by

$$
\gamma(r, \theta)=\left[\begin{array}{c}
2 \cos \theta+r \cos (\theta / 2) \\
2 \sin \theta+r \sin (\theta / 2) \\
r \sin (\theta / 2)
\end{array}\right]
$$

Then the image $M=\gamma(S)$ is a Mobius strip (graph this using software if you want to see for yourself). You may assume without proof that γ is injective on S, and $D(\gamma)(\vec{c})$ is injective for each $\vec{c} \in S$. However, this doesn't make γ a valid parameterization, because S is not open. Instead, we restrict the domain of γ to S^{\prime} (which is open).
(i) Which points of M are missing from the image $\gamma\left(S^{\prime}\right)$? Explain, and describe the missing set geometrically.
(ii) Find another open set $T \subseteq \mathbb{R}^{2}$ and another parameterization $\phi: T \rightarrow M$ such that $\phi(T)$ is "most of" M (in the same sense that $\gamma\left(S^{\prime}\right)$ is "most of" M), but the set of points missing from $\phi(T)$ is different from the set of points missing from $\gamma\left(S^{\prime}\right)$. Explain why your T and ϕ work, and describe the missing points of M. (You don't need to prove that ϕ and $D(\phi)$ are injective.)

That is, the goal of this problem is to "patch over" the part of M that's missing from $\gamma\left(S^{\prime}\right)$, thus parameterizing all of M.

