Problem Set 9

1. (i) Compute the volume of the following 3-dimensional solid using an appropriate linear change of varible.

$$
\left\{(x, y, z) \left\lvert\, \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}} \leq 1\right.\right\}
$$

(ii) Compute the area of the tringnle Δ in \mathbb{R}^{3} which has vertices $(0,0,0),(1,2,3)$ and $(1,-1,0)$.
2. Let \mathcal{S} be the half-circle $\left\{(x, y) \mid x^{2}+y^{2}<1, x<\sqrt{3} y\right\}$. Find the integral

$$
\int_{\mathcal{S}} x d x d y
$$

using a change of variables to polar coordinates.
3. (i) Describe the following region in cylindrical coordinates.

$$
\mathcal{S}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid z \leq \sqrt{x^{2}+y^{2}}, x^{2}+y^{2}<5, x<0, y>0\right\}
$$

(ii) Describe the following region in spherical coordinates.

$$
\mathcal{S}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid z \geq \sqrt{x^{2}+y^{2}}, z<5, x>0, y>0\right\}
$$

(iii) Describe the following region in cylindrical coordinates.

$$
\mathcal{S}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}<1,-\frac{1}{2}<z<\frac{1}{2}\right\}
$$

4. Compute the integral

$$
\int_{M} \sqrt{x^{2}+y^{2}}
$$

where $M \subset \mathbb{R}^{3}$ is the following 2-dimensional manifold

$$
M=\left\{(x, y, z) \in \mathbb{R}^{3} \mid 0<z<3 \pi, x=r \cos (z), y=r \sin (z) \text { with } 0<r<2\right\} .
$$

5. Find the length the curve in \mathbb{R}^{3} parametrized as

$$
\gamma:(-\pi, \pi) \rightarrow \mathbb{R}^{3}
$$

with

$$
\gamma(t)=(t, \cos (2 t), \sin (2 t))
$$

