Inverse Function Theorem

1. Consider the function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

$$
F\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{c}
x^{2}-y^{2} \\
x y
\end{array}\right]
$$

(i) Show that F is a local diffeomorphism at any point other than the origin.
(ii) Suppose $\mathbf{c}=\left[\begin{array}{c}-1 \\ 1\end{array}\right], \mathbf{b}=F(\mathbf{c}), F$ is a diffeomorphism on the ball $B_{r}(\mathbf{c})$ and G is the inverse of $\left.F\right|_{B_{r}(\mathbf{c})}$. Find $J_{\mathbf{b}}(G)$
2. Consider the function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

$$
F\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{l}
e^{x} \cos (y) \\
e^{x} \sin (y)
\end{array}\right]
$$

(i) Show that F is a local diffeomorphism at any point.
(ii) Show that F is not a (global) diffeomorphism.
3. Consider the function $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$

$$
F\left(\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]\right)=\left[\begin{array}{c}
x+z \\
y+z^{2} \\
x^{2}+y z
\end{array}\right]
$$

(i) Show that F is a diffeomorphism in a neighborhood B of $\mathbf{c}=\left[\begin{array}{c}-1 \\ 7 \\ 2\end{array}\right]$.
(ii) Suppose $\mathbf{b}=F(\mathbf{c})$ and G is the inverse of $\left.F\right|_{B_{r}(\mathbf{c})}$. Find $J_{\mathbf{b}}(G)$

