Implicit Function Theorem

1. Consider the function $F : \mathbb{R}^2 \to \mathbb{R}$

$$F\left(\left[\begin{array}{c}x\\y\end{array}\right]\right) = x^2 + y^2 - 25$$

(i) Show that there is an open interval B centered at the point b = 4, an open interval W containing a = -3, and a continuously differentiable function $\phi : B \to W$ with $b = \phi(a)$ such that, for all $y \in B, x \in W$ and F(x,y) = 0 if and only if $x = \phi(y)$.

(ii) Find the Jacobian $J_{\mathbf{b}}(\phi)$.

(iii) Does the claim in part (i) hold if we assume a = 0 and b = 5?

2. Consider the function $F : \mathbb{R}^3 \to \mathbb{R}$

$$F\left(\left[\begin{array}{c}x\\y\\z\end{array}\right]\right) = x^3 + 12xz + y^2$$

(i) Show that there is an open disc B centered at the point $\mathbf{b} = (5, 2)$, an open interval W containing a = -1, and a continuously differentiable function $\phi : B \to W$ with $a = \phi(\mathbf{b})$ such that, for all $(y,z) \in B, x \in W$ and F(x,y,z) = 0 if and only if $x = \phi(y,z)$.

(ii) Find the Jacobian $J_{\mathbf{b}}(\phi)$.