Implicit Function Theorem

1. Consider the function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$

$$
F\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=x^{2}+y^{2}-25
$$

(i) Show that there is an open interval B centered at the point $b=4$, an open interval W containing $a=-3$, and a continuously differentiable function $\phi: B \rightarrow W$ with $b=\phi(a)$ such that, for all $y \in B, x \in W$ and $F(x, y)=0$ if and only if $x=\phi(y)$.
(ii) Find the Jacobian $J_{\mathbf{b}}(\phi)$.
(iii) Does the claim in part (i) hold if we assume $a=0$ and $b=5$?
2. Consider the function $F: \mathbb{R}^{3} \rightarrow \mathbb{R}$

$$
F\left(\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]\right)=x^{3}+12 x z+y^{2}
$$

(i) Show that there is an open disc B centered at the point $\mathbf{b}=(5,2)$, an open interval W containing $a=-1$, and a continuously differentiable function $\phi: B \rightarrow W$ with $a=\phi(\mathbf{b})$ such that, for all $(y, z) \in B, x \in W$ and $F(x, y, z)=0$ if and only if $x=\phi(y, z)$.
(ii) Find the Jacobian $J_{\mathbf{b}}(\phi)$.

