Taylor Polynomials

1. Find the degree 3 Taylor polynomial T_{3} of the function $f(x)=\sqrt{x}$ centered at the point $c=1$.
2. For an arbitrary function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, write

$$
\sum_{|\alpha|=3} D_{\mathbf{c}}^{\alpha}(f)
$$

in terms of the partial derivatives of f at the point \mathbf{c}.
3. For an arbitrary function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$, write the degree 2 Taylor polynomial of f centered at \mathbf{c} in terms of the partial derivatives of f at the point \mathbf{c}.
4. Find the degree 2 Taylor polynomial T_{2} of the function $f\left(\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right)=\frac{3+x^{2}}{y+z}$ centered at the point $\mathbf{c}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.
5. Suppose $\mathcal{M} \subset \mathbb{R}^{2}$ is the set of points (x, t) which satisfy the following equation

$$
F(x, t)=x^{3}+x t+t^{2}-7
$$

Notice that the point $(1,2)$ is an element of \mathcal{M}. The implicit function theorem implies that there are neighborhoods B of 2 and W of 1 and a function $\varphi: B \rightarrow W$ such that $(x, t) \in W \times B \in \mathcal{M}$ if and only if $x=\phi(t)$. Find the degree 3 Taylor polynomial of φ centered at 2 .
6. Suppose $\mathcal{M} \subset \mathbb{R}^{3}$ is the set of points (x, s, t) which satisfy the following equation

$$
F(x, t)=x^{3}+x s+t^{2}-2
$$

Notice that the point $(-1,1,2)$ is an element of \mathcal{M}. The implicit function theorem implies that there are neighborhoods B of $(1,2)$ and W of 2 and a function $\varphi: B \rightarrow W$ such that $(x, s, t) \in W \times B \in \mathcal{M}$ if and only if $x=\phi(s, t)$. Find the degree 2 Taylor polynomial of φ centered at $(1,2)$.

