Quadratic Forms

1. Find a symmetric matrix Q such that the quadratic form

$$
Q(x, y)=\frac{x^{2}}{2}+x y
$$

can be written as

$$
\left[\begin{array}{ll}
x & y
\end{array}\right] Q\left[\begin{array}{l}
x \\
y
\end{array}\right] .
$$

2. Find a symmetric matrix Q such that the quadratic form

$$
Q(x, y)=x_{1}^{2}+2 x_{1} x_{2}+2 x_{2}^{2}+4 x_{1} x_{3}+5 x_{2} x_{3}
$$

can be written as

$$
\vec{x}^{t} Q \vec{x}
$$

with $\vec{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$.
3. Diagonalize the quadratic form in Problem $\# 1$ and determine the rank and signature of the quadratic form.
4. Diagonalize the quadratic form in Problem $\# 2$ and determine the rank and signature of the quadratic form.
5. Diagonalize the quadratic form $Q(x, y)=x y+2 y z$ and determine the rank and signature of the quadratic form.

