Problem Set 10

- 1. In each part, apply the Gram-Schmidt process to obtain an orthonormal basis S_1 from the basis S_0 for the vector space V. (You don't need to show that S_0 is a basis.)
 - (i) $V = \mathbb{R}^3$ with the standard inner product, $S_0 = \left\{ \begin{bmatrix} 2\\ -2\\ 1 \end{bmatrix}, \begin{bmatrix} 0\\ 1\\ 1\\ 0 \end{bmatrix} \right\}, \begin{bmatrix} 1\\ 1\\ 0\\ 0 \end{bmatrix} \right\}.$

(ii)
$$V = M_{2 \times 2}(\mathbb{R})$$
 with the standard inner product, $S_0 = \left\{ \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 1 \\ 1 & 3 \end{bmatrix}, \begin{bmatrix} 1 & 3 \\ 3 & 4 \end{bmatrix} \right\}$.

(iii) $V = \mathcal{P}_3$, polynomials of degree at most 3, with the inner product $\langle p(x), q(x) \rangle = \int_0^1 p(x)q(x)dx$ and $\mathcal{S}_0 = \{1, x, x^2, x^3\}$. 2. In each part, firstly find an orthonormal basis for the subspace W of V. Then use the basis to write the vector v as a sum w + z where $w \in W$ and $z \in W^{\perp}$.

(ii) $V = \mathcal{P}_3$, polynomials of degree at most 3, with the inner product $\langle p(x), q(x) \rangle = \int_0^1 p(x)q(x)dx$, $W = \{1, x, x^2\}$ and $v = x^3 + 2x^2 - 2$. 3. Suppose u_1 and u_2 are vectors of an inner product space V. Define $T(v) = \langle v, u_1 \rangle u_2$. Show that T is a linear map and find its adjoint.

4. Suppose $A = \{v_1, \ldots, v_k\}$ is a set of vectors in the vector space V with the inner product \langle , \rangle . Show that if $\langle w, v_i \rangle = 0$, then w belongs to the orthogonal complement of Span(A). (We use this fact several times in the class, and here you verify it.)

5. Suppose V_1 and V_2 are vector spaces with inner product. Suppose $T: V_1 \to V_2$ is a linear transformation and $T^*: V_2 \to V_1$ is its adjoint. The goal of this problem is to show that

$$\operatorname{kernel}(T^*) = \operatorname{image}(T)^{\perp}, \qquad \operatorname{image}(T^*) = \operatorname{kernel}(T)^{\perp} \tag{1}$$

(i) Using the defining relation

$$\langle T(u), v \rangle = \langle u, T^*(v) \rangle$$
 for all $u \in V_1$ and $v \in V_2$,

of T^* show that if u is in the kernel of T, then it is orthogonal to any vector in the image of T^* . This shows that $\operatorname{kernel}(T) \subseteq \operatorname{image}(T^*)^{\perp}$.

(ii) Show that if u is orthogonal to any vector in the image of T^* (a vector of the form $T^*(v)$), then u is in the kernel of T. Using this and the last part, show that $\text{kernel}(T) = \text{image}(T^*)^{\perp}$.

(iii) Derive the identities in (1) from the result of the last part using the relations $(W^{\perp})^{\perp} = W$ and $T^{**} = T$.

6. Suppose V is a vector space over complex numbers \mathbb{C} with an inner product $\langle , \rangle : V \times V \to \mathbb{C}$. Since $\mathbb{R} \subset \mathbb{C}$, the vector space V can be also regarded as a vector space over real numbers \mathbb{R} . For any two vector $u, v \in V$, let $[u,v] \in \mathbb{R}$ be the real part of $\langle u,v \rangle \in \mathbb{C}$. Show that if V is regarded as a vector space over \mathbb{R} , then [,] defines an inner product on V. Show also that $[v,\sqrt{-1}v] = 0$.