Problem Set 10

1. In each part, apply the Gram-Schmidt process to obtain an orthonormal basis \mathcal{S}_{1} from the basis \mathcal{S}_{0} for the vector space V. (You don't need to show that \mathcal{S}_{0} is a basis.)
(i) $V=\mathbb{R}^{3}$ with the standard inner product, $\mathcal{S}_{0}=\left\{\left[\begin{array}{c}2 \\ -2 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]\right\}$.
(ii) $V=M_{2 \times 2}(\mathbb{R})$ with the standard inner product, $\mathcal{S}_{0}=\left\{\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right],\left[\begin{array}{cc}-1 & 1 \\ 1 & 3\end{array}\right],\left[\begin{array}{ll}1 & 3 \\ 3 & 4\end{array}\right]\right\}$.
(iii) $V=\mathcal{P}_{3}$, polynomials of degree at most 3 , with the inner product $\langle p(x), q(x)\rangle=\int_{0}^{1} p(x) q(x) d x$ and $\mathcal{S}_{0}=\left\{1, x, x^{2}, x^{3}\right\}$.
2. In each part, firstly find an orthonormal basis for the subspace W of V. Then use the basis to write the vector v as a sum $w+z$ where $w \in W$ and $z \in W^{\perp}$.
(i) $V=\mathbb{R}^{4}$ with the standard inner product, $W=\operatorname{Span}\left\{\left[\begin{array}{c}2 \\ -2 \\ -1 \\ 4\end{array}\right],\left[\begin{array}{c}-2 \\ -5 \\ 1 \\ 5\end{array}\right],\left[\begin{array}{c}-1 \\ 7 \\ 3 \\ 11\end{array}\right]\right\}, v=$

$$
\left[\begin{array}{c}
-11 \\
-4 \\
8 \\
18
\end{array}\right]
$$

(ii) $V=\mathcal{P}_{3}$, polynomials of degree at most 3 , with the inner product $\langle p(x), q(x)\rangle=\int_{0}^{1} p(x) q(x) d x$, $W=\left\{1, x, x^{2}\right\}$ and $v=x^{3}+2 x^{2}-2$.
3. Suppose u_{1} and u_{2} are vectors of an inner product space V. Define $T(v)=\left\langle v, u_{1}\right\rangle u_{2}$. Show that T is a linear map and find its adjoint.
4. Suppose $A=\left\{v_{1}, \ldots, v_{k}\right\}$ is a set of vectors in the vector space V with the inner product \langle,$\rangle . Show$ that if $\left\langle w, v_{i}\right\rangle=0$, then w belongs to the orthogonal complement of $\operatorname{Span}(A)$. (We use this fact several times in the class, and here you verify it.)
5. Suppose V_{1} and V_{2} are vector spaces with inner product. Suppose $T: V_{1} \rightarrow V_{2}$ is a linear transformation and $T^{*}: V_{2} \rightarrow V_{1}$ is its adjoint. The goal of this problem is to show that

$$
\begin{equation*}
\operatorname{kernel}\left(T^{*}\right)=\operatorname{image}(T)^{\perp}, \quad \operatorname{image}\left(T^{*}\right)=\operatorname{kernel}(T)^{\perp} \tag{1}
\end{equation*}
$$

(i) Using the defining relation

$$
\langle T(u), v\rangle=\left\langle u, T^{*}(v)\right\rangle \quad \text { for all } u \in V_{1} \text { and } v \in V_{2}
$$

of T^{*} show that if u is in the kernel of T, then it is orthogonal to any vector in the image of T^{*}. This shows that $\operatorname{kernel}(T) \subseteq \operatorname{image}\left(T^{*}\right)^{\perp}$.
(ii) Show that if u is orthogonal to any vector in the image of T^{*} (a vector of the form $T^{*}(v)$), then u is in the kernel of T. Using this and the last part, show that $\operatorname{kernel}(T)=\operatorname{image}\left(T^{*}\right)^{\perp}$.
(iii) Derive the identities in (1) from the result of the last part using the relations $\left(W^{\perp}\right)^{\perp}=W$ and $T^{* *}=T$.
6. Suppose V is a vector space over complex numbers \mathbb{C} with an inner product $\langle\rangle:, V \times V \rightarrow \mathbb{C}$. Since $\mathbb{R} \subset \mathbb{C}$, the vector space V can be also regarded as a vector space over real numbers \mathbb{R}. For any two vector $u, v \in V$, let $[u, v] \in \mathbb{R}$ be the real part of $\langle u, v\rangle \in \mathbb{C}$. Show that if V is regarded as a vector space over \mathbb{R}, then [,] defines an inner product on V. Show also that $[v, \sqrt{-1} v]=0$.

