Problem Set 1

1. Define addition and scalar multiplication on \mathbb{R}^{3} as follows:

$$
\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]+\left[\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\left[\begin{array}{c}
\left(\sqrt[3]{a_{1}}+\sqrt[3]{b_{1}}\right)^{3} \\
\left(\sqrt[3]{a_{2}}+\sqrt[3]{b_{2}}\right)^{3} \\
\left(\sqrt[3]{a_{3}}+\sqrt[3]{b_{3}}\right)^{3}
\end{array}\right], \quad \lambda \cdot\left[\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{c}
\lambda^{3} a_{1} \\
\lambda^{3} a_{2} \\
\lambda^{3} a_{3}
\end{array}\right]
$$

Show that \mathbb{R}^{3} together with these operations defines a vector space.
Solution. The addition is symmetric:

$$
\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]+\left[\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\left[\begin{array}{c}
\left(\sqrt[3]{a_{1}}+\sqrt[3]{b_{1}}\right)^{3} \\
\left(\sqrt[3]{a_{2}}+\sqrt[3]{b_{2}}\right)^{3} \\
\left(\sqrt[3]{a_{3}}+\sqrt[3]{b_{3}}\right)^{3}
\end{array}\right]=\left[\begin{array}{c}
\left(\sqrt[3]{b_{1}}+\sqrt[3]{a_{1}}\right)^{3} \\
\left(\sqrt[3]{b_{2}}+\sqrt[3]{a_{2}}\right)^{3} \\
\left(\sqrt[3]{b_{3}}+\sqrt[3]{a_{3}}\right)^{3}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]+\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]
$$

and associative:

$$
\begin{gathered}
\left(\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]+\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]\right)+\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{c}
\left(\sqrt[3]{a_{1}}+\sqrt[3]{b_{1}}\right)^{3} \\
\left(\sqrt[3]{a_{2}}+\sqrt[3]{b_{2}}\right)^{3} \\
\left(\sqrt[3]{a_{3}}+\sqrt[3]{b_{3}}\right)^{3}
\end{array}\right]+\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{c}
\left(\sqrt[3]{a_{1}}+\sqrt[3]{b_{1}}+\sqrt[3]{c_{1}}\right)^{3} \\
\left(\sqrt[3]{a_{2}}+\sqrt[3]{b_{2}}+\sqrt[3]{c_{2}}\right)^{3} \\
\left(\sqrt[3]{a_{3}}+\sqrt[3]{b_{3}}+\sqrt[3]{c_{1}}\right)^{3}
\end{array}\right]= \\
=\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]+\left[\begin{array}{c}
\left(\sqrt[3]{b_{1}}+\sqrt[3]{c_{1}}\right)^{3} \\
\left(\sqrt[3]{b_{2}}+\sqrt[3]{c_{2}}\right)^{3} \\
\left(\sqrt[3]{b_{3}}+\sqrt[3]{c_{3}}\right)^{3}
\end{array}\right]=\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]+\left(\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]+\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]\right) .
\end{gathered}
$$

The vector $\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ is the neutral element for addiction and the additive inverse of $\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right]$ is equal to $\left[\begin{array}{l}-a_{1} \\ -a_{2} \\ -a_{3}\end{array}\right]$. Scaling of any vector $\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right]$ by $\lambda=1$ is clearly equal to $\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right]$. We also have:

$$
\begin{gathered}
\mu\left(\lambda\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]\right)=\mu\left[\begin{array}{l}
\lambda^{3} a_{1} \\
\lambda^{3} a_{2} \\
\lambda^{3} a_{3}
\end{array}\right]=\left[\begin{array}{c}
\mu^{3} \lambda^{3} a_{1} \\
\mu^{3} \lambda^{3} a_{2} \\
\mu^{3} \lambda^{3} a_{3}
\end{array}\right]=(\mu \lambda)\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right] \\
(\mu+\lambda)\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{c}
(\mu+\lambda)^{3} a_{1} \\
(\mu+\lambda)^{3} a_{2} \\
(\mu+\lambda)^{3} a_{3}
\end{array}\right]=\left[\begin{array}{c}
\left(\mu \sqrt[3]{a_{1}}+\lambda \sqrt[3]{a_{1}}\right)^{3} \\
\left(\mu \sqrt[3]{a_{2}}+\lambda \sqrt[3]{a_{2}}\right)^{3} \\
\left(\mu \sqrt[3]{a_{3}}+\lambda \sqrt[3]{a_{3}}\right)^{3}
\end{array}\right]=\left[\begin{array}{c}
\mu^{3} a_{1} \\
\mu^{3} a_{2} \\
\mu^{3} a_{3}
\end{array}\right]+\left[\begin{array}{c}
\lambda^{3} a_{1} \\
\lambda^{3} a_{2} \\
\lambda^{3} a_{3}
\end{array}\right]=\mu\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]+\lambda\left[\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right],
\end{gathered}
$$

and:

$$
\begin{aligned}
\lambda\left(\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]+\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]\right)= & \lambda\left[\begin{array}{c}
\left(\sqrt[3]{a_{1}}+\sqrt[3]{b_{1}}\right)^{3} \\
\left(\sqrt[3]{a_{2}}+\sqrt[3]{b_{2}}\right)^{3} \\
\left(\sqrt[3]{a_{3}}+\sqrt[3]{b_{3}}\right)^{3}
\end{array}\right]=\left[\begin{array}{c}
\lambda^{3}\left(\sqrt[3]{a_{1}}+\sqrt[3]{b_{1}}\right)^{3} \\
\lambda^{3}\left(\sqrt[3]{a_{2}}+\sqrt[3]{b_{2}}\right)^{3} \\
\lambda^{3}\left(\sqrt[3]{a_{3}}+\sqrt[3]{b_{3}}\right)^{3}
\end{array}\right]=\left[\begin{array}{c}
\left(\sqrt[3]{\lambda^{3} a_{1}}+\sqrt[3]{\lambda^{3} b_{1}}\right)^{3} \\
\left(\sqrt[3]{\lambda^{3} a_{2}}+\sqrt[3]{\lambda^{3} b_{2}}\right)^{3} \\
\left(\sqrt[3]{\lambda^{3} a_{3}}+\sqrt[3]{\lambda^{3} b_{3}}\right)^{3}
\end{array}\right]= \\
& {\left[\begin{array}{c}
\lambda^{3} a_{1} \\
\lambda^{3} a_{2} \\
\lambda^{3} a_{3}
\end{array}\right]+\left[\begin{array}{c}
\lambda^{3} b_{1} \\
\lambda^{3} b_{2} \\
\lambda^{3} b_{3}
\end{array}\right]=\lambda \cdot\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]+\lambda \cdot\left[\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right] \cdot }
\end{aligned}
$$

This complete the proof of showing that \mathbb{R}^{3} with the above addition and scalar multiplication is a vector space.
2. For a vector x in a vector space V and a scalar $\lambda \in \mathbb{R}$, let $\lambda v=0$. Show that either $\lambda=0$ or $v=0$. Solution. If $\lambda=0$, then we are done. If $\lambda \neq 0$, then we have:

$$
0=\frac{1}{\lambda}(\lambda v)=\left(\frac{1}{\lambda} \cdot \lambda\right) v=1 v=v
$$

Therefore, $v=0$.
3. Are the following subsets of $C(\mathbb{R}, \mathbb{R})$ subspaces? Justify your answer in each case.
(i) $W_{1}:=\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f$ is continuous and $f(1)=0\}$.

Solution. Suppose f and g belong to W_{1} and $c \in \mathbb{R}$. Then we have:

$$
(f+g)(1)=f(1)+g(1)=0+0=0
$$

and

$$
(c f)(1)=c \times f(1)=c \times 0=0
$$

(ii) $W_{2}:=\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f$ is continuous and $f(0)=1\}$.

Solution. This set is not a subspace of $C(\mathbb{R}, \mathbb{R})$ because the constant function $f(x) \equiv 1$ is in W_{2}, but $0 \cdot f$ is not in W_{2}.
4. The transpose of a matrix $A=\left[a_{i, j}\right]$ in $M_{m \times n}(\mathbb{R})$ is the matrix $A^{t}=\left[a_{i, j}^{t}\right]$ in $M_{n \times m}(\mathbb{R})$ such that

$$
a_{i, j}^{t}=a_{j, i}
$$

A matrix $A \in M_{n \times n}(\mathbb{R})$ is anti-symmetric if $A=-A^{t}$.
(i) Write down the general form of an anti-symmetric matrix in $M_{3 \times 3}(\mathbb{R})$.

Solution.

$$
\left[\begin{array}{ccc}
0 & a & b \\
-a & 0 & c \\
-b & -c & 0
\end{array}\right]
$$

(ii) Show that the set of all anti-symmetric matrices is a subspace of $M_{n \times n}(\mathbb{R})$.

Solution. Suppose A, B are anti-symmetric matrices in $M_{n \times n}(\mathbb{R})$ and $c \in \mathbb{R}$. Then we have:

$$
(A+B)^{t}=A^{t}+B^{t}=(-A)+(-B)=-(A+B)
$$

and

$$
(c A)^{t}=c A^{t}=-c A
$$

Therefore, the set of anti-symmetric matrices forms a subspace of $M_{n \times n}(\mathbb{R})$.
5. A field is a set F together with the maps $+: F \times F \rightarrow F$ and $: F \times F \rightarrow F$ which satisfy the following properties:
(F1) $a+b=b+a$ for any $a, b \in F$;
(F2) $(a+b)+c=a+(b+c)$ for any $a, b, c \in F$;
(F3) There is $0 \in F$ such that for $a \in F$, we have $a+0=a$;
(F4) For any $a \in F$, there is $a^{\prime} \in F$ such that $a+a^{\prime}=0$;
(F5) $a \cdot b=b \cdot a$ for any $a, b \in F$;
(F6) $(a \cdot b) \cdot c=a \cdot(b \cdot c)$ for any $a, b, c \in F$;
(F7) There is $1 \in F$ such that for $a \in F$, we have $a \cdot 1=a$;
(F8) For any non-zero $a \in F$, there is $a^{\prime \prime} \in F$ such that $a \cdot a^{\prime \prime}=1$;
(F9) $(a+b) \cdot c=a \cdot c+b \cdot c$ for any $a, b, c \in F$.
(i) Let S be a set with two elements. Define operations + and . such that the resulting space is a field. We denote this field by $\mathbb{Z} / 2$. (You do not need to write down the verification of the above properties.)

Solution. We denote the two elements of $\mathbb{Z} / 2$ by 0 (neutral element for addition) and 1 (neutral element for multiplication). We define addition and multiplication on $\mathbb{Z} / 2$ as follows:

+	0	1
0	0	1
1	1	0

\times	0	1
0	0	0
1	0	1

(ii) We may define the notion of a vector space V over a field F in the same way as before, except that scalar multiplcation is defined as the multiplication of an element of F and a vector V. In particular, the vector addition and scalar multiplication need to satisfy the eight properties that we listed in the class. Let $M_{m \times n}(F)$ be the space of m by n matrices such that each entry is an element of F. Define a vector space structure on $M_{m \times n}(F)$ generalizing the definition of addition and scalar multiplication for $M_{m \times n}(\mathbb{R})$.

Solution. Let $A=\left[a_{i, j}\right]_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}}$ and $B=\left[b_{i, j}\right]_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}}$ are two elements of $M_{m \times n}(F)$ and $c \in F$. then we define:

$$
A+B=\left[a_{i, j}+b_{i, j}\right]_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}}, \quad c A=\left[c a_{i, j}\right]_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}}
$$

It can be easily seen that this addition and scalar multiplication define a vector space structure on $M_{m \times n}(F)$.
(iii) How many elements does the vector space $M_{m \times n}(\mathbb{Z} / 2)$ have?

Solution. An element of $M_{m \times n}(\mathbb{Z} / 2)$ has $m n$ entries and there are two possibilities for each entry. Therefore, there are $2^{m n}$ matrices in $M_{m \times n}(\mathbb{Z} / 2)$.

