Problem Set 2

1. In each of the following cases determine whether the given set is a basis for \mathbb{R}^{n} :
(i) $n=3$ and $S=\left\{\left[\begin{array}{c}2 \\ 3 \\ -1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]\right\}$.
(ii) $n=4$ and $S=\left\{\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}3 \\ -2 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}4 \\ 0 \\ 1 \\ 0\end{array}\right]\right\}$.
(iii) $n=3$ and $S=\left\{\left[\begin{array}{l}6 \\ 0 \\ 6\end{array}\right],\left[\begin{array}{l}5 \\ 0 \\ 2\end{array}\right],\left[\begin{array}{l}3 \\ 1 \\ 4\end{array}\right],\left[\begin{array}{l}0 \\ 7 \\ 9\end{array}\right]\right\}$.
2. In each of the following cases determine whether the given matrices form a basis for $M_{2 \times 2}(\mathbb{R})$:
(i) $\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right]$.
(ii) $\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right],\left[\begin{array}{cc}0 & 0 \\ 1 & -1\end{array}\right]$.
3. Suppose S is a linearly independent generating set for a vector space V. Show that S is an efficient generating set, i.e., any proper subset of S is not a generating set.
4. Write down three different bases for the vector space $M_{2 \times 1}(\mathbb{Z} / 2 \mathbb{Z})$. (Recall that $M_{m \times n}(\mathbb{Z} / 2 \mathbb{Z})$ is defined in Problem 5 of the first problem set.)
5. Let \mathcal{P} denote the subspace of $C(\mathbb{R}, \mathbb{R})$ defined as follows:

$$
\mathcal{P}=\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f \text { is a polynomial }\}
$$

Recall that a polynomial $f(x)$ is a function which has the following form:

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

for some choice of $n, a_{0}, a_{1}, \ldots, a_{n}$. Find a basis for \mathcal{P}.
6. Suppose $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is a basis for a vector space V. Show that each of the following sets is also a basis for V.
(i) $\left\{x_{1}+x_{2}, x_{2}, x_{3}, \ldots, x_{n}\right\}$.
(i) $\left\{\lambda \cdot x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right\}$, where λ is a non-zero number.

