Problem Set 3

1. Determine all linear subspaces of the vector space \mathbb{R}^{3}.
2. Determine the kernel of the following linear transformations:
(i) $T\left(\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right)=\left[\begin{array}{c}2 x+y+6 z \\ 5 x+y \\ 7 x+y-4 z\end{array}\right]$.
(ii) $T\left(\left[\begin{array}{c}x \\ y \\ z \\ w\end{array}\right]\right)=\left[\begin{array}{c}3 x+6 y+5 z-6 w \\ x+2 z+7 w+8 y\end{array}\right]$.
3. Verify whether the vector v is in the image of of the linear transformation $T(x)=A x$.
(i) $v=\left[\begin{array}{l}8 \\ 3 \\ 1 \\ 4\end{array}\right], A=\left[\begin{array}{ll}2 & 4 \\ 0 & 2 \\ 1 & 0 \\ 1 & 2\end{array}\right]$.
(ii) $v=\left[\begin{array}{l}1 \\ 2 \\ 5\end{array}\right], A=\left[\begin{array}{ccc}2 & -3 & 6 \\ -8 & 1 & -6 \\ 3 & 1 & 0\end{array}\right]$.
4. (i) Give an example of a linear map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that the kernel and the image of T are equal to each other.
(ii) Find linear maps $T_{1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ and $T_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that they have the same kernels and the same images but T_{2} is not a multiple of T_{1}.
5. Suppose W_{1} and W_{2} are subspaces of a vector space V. We define $W_{1}+W_{2}$ to be the subset of V consisting of vectors x in V which can be written as $x_{1}+x_{2}$ where $x_{i} \in W_{i}$.
(i) Show that $W_{1}+W_{2}$ is a subspace of V.
(ii) Show that the dimension of $W_{1}+W_{2}$ is at most equal to $\operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)$.
(iii) By giving an example, show that it is possible that the dimension of $W_{1}+W_{2}$ is strictly less than $\operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)$.
6. (i) Suppose V is a finite dimensional vector space and $T: V \rightarrow V$ is a linear transformation with trivial kernel. Show that T is surjective.
(ii) Suppose $T: C(\mathbb{R}, \mathbb{R}) \rightarrow C(\mathbb{R}, \mathbb{R})$ is the linear transformation given by

$$
T(f)(x):=\int_{0}^{x} f(t) d t
$$

In the class we saw T as an example of a linear map. Show that T has trivial kernel. By determining the image of this map show that the claim in part (i) is not correct anymore if we drop the finite dimensionality assumption on V.

