
Problem Set 3

1. Determine all linear subspaces of the vector space R3.

Solution. Possible dimensions for a subspace W of R3 are 0, 1, 2 and 3.

Case 1 (dim(V ) = 0) The only 0-dimensional subspace of a vector space is the vector space {0}.

Case 2 (dim(V ) = 1) A 1-dimensional subspace of R3 can be written as
 at

bt
ct

 | t ∈ R


where

 a
b
c

 is a fixed non-zero vector in R3. Geometrically, this is a line which passes through the

origin. Varying the non-zero vector

 a
b
c

 exhausts all possible 1-dimensional subspaces of R3.

Case 3 (dim(V ) = 2) A 2-dimensional subspace of R3 can be written as
 at+ a′s

bt+ b′s
ct+ c′s

 | t,s ∈ R


where

 a
b
c

 and

 a′

b′

c′

 are two fixed vectors in R3 which are not linearly independent. Geometrically,

this is a plane which passes through the origin. Varying the linearly independent vectors

 a
b
c

 and a′

b′

c′

 exhausts all possible 2-dimensional subspaces of R3.

Case 3 (dim(V ) = 3) Any n-dimensional subspace of an n-dimensional vector space X is equal to X.
In particular, any 3-dimensional subspace of R3 is equal to R3.

Solution. Take T : R2 → R2 to be the linear map given by the matrix

A =

[
0 1
0 0

]
Then the image and the kernel of T can be both identified with the line

L = {
[

t
0

]
| t ∈ R}.
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2. Determine the kernel of the following linear transformations:

(i) T

 x
y
z

 =

 2x+ y + 6z
5x+ y

7x+ y − 4z

 .

Solution. Suppose

 x
y
z

 is in the kernel of T . Then we have:

 2x+ y + 6z = 0
5x+ y = 0
7x+ y − 4z = 0

=⇒

 2x+ y + 6z = 0
10x+ 2y = 0
14x+ 2y − 8z = 0

=⇒

 2x+ y + 6z = 0
(−3)y − (30)z = 0
(−5)y − (50)z = 0

=⇒

 2x+ y + 6z = 0
y + 10z = 0
y + 10z = 0

The second system is obtained from the first one by multiplying the second and the third equations
by 2. Then subtracting multiples of the first equation from the second and the third equation gives
rise to the third system. By dividing the second and the third equations of the third system by
(−3) and (−5), we obtain the last system. Now we subtract the second equation from the first and
the third equations to obtain the following system: 2x− 4z = 0

y + 10z = 0
0 = 0

Now if we pick z arbitrarily, then the first equation can be used to determine x, the second equation
can be used to determine y and the third equation is always satisfied. Therefore, a general solution
to the above system is given as: 

 2t
−10t
t

 | t ∈ R



(ii) T




x
y
z
w


 =

[
3x+ 6y + 5z − 6w
x+ 2z + 7w + 8y

]
.

Solution. Suppose


x
y
z
w

 is in the kernel of T . Then we have:

{
3x+ 6y + 5z − 6w = 0
x+ 8y + 2z + 7w = 0

=⇒
{

18y − z − 27w = 0
x+ 8y + 2z + 7w = 0

=⇒
{

18y − z − 27w = 0
x+ 44y − 47w = 0

The second system is obtained from the first by subtracting third times the second equation from
the first equation. Then adding twice of the first equation to the second one gives the third system.
Now if we pick w and y arbitrarily, then the second equation can be used to determine x and the
first equation can be used to determine z. Therefore, a general solution to the above system is
given as: 


47t− 44s

s
18s− 27t

t

 | s,t ∈ R

 .
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3. Verify whether the vector v is in the image of of the linear transformation T (x) = Ax.

(i) v =


8
3
1
4

 , A =


2 4
0 2
1 0
1 2

.

Solution. If the vector v is equal to A

[
x
y

]
, then x and y need to satisfy the following

x


2
0
1
1

+ y


4
2
0
2

 =


8
3
1
4

 =⇒


2x+ 4y = 8
2y = 3
x = 1
x+ 2y = 4

The above system clearly has the solution x = 1 and y = 3
2 . So v is in the image of T .

(ii) v =

 1
2
5

 , A =

 2 −3 6
−8 1 −6
3 1 0

.

Solution. If the vector v is equal to A

 x
y
z

, then x, y and z need to satisfy the following

x

 2
−8
3

+ y

 −31
1

+ z

 6
−6
0

 =

 1
2
5

 =⇒

 2x− 3y + 6z = 1
(−8)x+ y − 6z = 2
3x+ y = 5

We add the first equation and twice of the third equation to the second equation to obtain the
following system  2x− 3y + 6z = 1

0 = 13
3x+ y = 5

This system does not have any solution because the second equation is never satisfied. So v is not
in the image of T .
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4. (i) Give an example of a linear map T : R2 → R2 such that the kernel and the image of T are equal
to each other.

Solution. Take T : R2 → R2 to be the linear map given by the matrix

A =

[
0 1
0 0

]
Then the image and the kernel of T can be both identified with the line

L = {
[

t
0

]
| t ∈ R}.

(ii) Find linear maps T1 : R2 → R2 and T2 : R2 → R2 such that they have the same kernels and the
same images but T2 is not a multiple of T1.

Solution. Take T1 : R2 → R2 and T2 : R2 → R2 to be the linear maps given by the matrices

A1 =

[
1 1
0 1

]
, A2 =

[
1 2
0 1

]
.

It is straightforward to check that the images of T1 and T2 are both equal to R2, and their kernels are
equal to the zero vector space. However, T1 and T2 are not multiple of each other.
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5. Suppose W1 and W2 are subspaces of a vector space V . We define W1 + W2 to be the subset of V
consisting of vectors x in V which can be written as x1 + x2 where xi ∈Wi.

(i) Show that W1 +W2 is a subspace of V .

Solution. Firstly note that 0 is clearly an element of W1 + W2 because 0 = 0 + 0. Suppose
v, v′ ∈W1 +W2 and c ∈ R. Therefore, there are x1, x

′
1 ∈W1 and x2, x

′
2 ∈W2 such that

v = x1 + x2, v′ = x′
1 + x′

2.

Then we have

v + v′ = (x1 + x′
1)︸ ︷︷ ︸

∈W1

+(x2 + x′
2)︸ ︷︷ ︸

∈W2

, cv = (cx1)︸ ︷︷ ︸
∈W1

+(cx2)︸ ︷︷ ︸
∈W2

which completes the proof of the claim that W1 +W2 is a subspace.

(ii) Show that the dimension of W1 +W2 is at most equal to dim(W1) + dim(W2).

Solution. Suppose S1 = {x1, . . . ,xk} is a basis for W1 and S2 = {y1, . . . ,yl} is a basis for W2.
This means that:

k = dim(W1), l = dim(W2).

To prove the claim, we show that S1 ∪ S2 is a generating set for W1 +W2. This would show that
dim(W1 +W2) ≤ k + l which completes the proof.

Suppose v is a vector in W1 +W2. Then it can be written as z1 + z2 where zi ∈Wi. Since Si is a
basis (and hence a generating set) for Wi, we can write zi as a linear combination of the elements
of Si

z1 = a1x1 + a2x2 + · · ·+ akxk, z2 = a1x1 + a2x2 + · · ·+ akxk.

Thus we have
v = a1x1 + a2x2 + · · ·+ akxk + a1x1 + a2x2 + · · ·+ akxk.

So v ∈ Span(S1 ∪ S2).

(iii) By giving an example, show that it is possible that the dimension of W1 +W2 is strictly less than
dim(W1) + dim(W2).

Solution. Take V = R2, W1 = W2 = R2. Then W1 +W2 = R2. We also have:

2 = dim(W1 +W2) < dim(W1) + dim(W2) = 4.
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6. (i) Suppose V is a finite dimensional vector space and T : V → V is a linear transformation with
trivial kernel. Show that T is surjective.

Solution. Suppose T : V → V is an injective linear transformation with dim(V ) being finite.
Then dimension formula implies that

Nullity(T ) + Rank(T ) = dim(V ).

Since T is injective, Ker(T ) is trivial and hence Nullity(T ) = 0. Using this fact, we can rewrite
the above equality as

Rank(T ) = dim(V ).

Therefore, the dimension of the image of T , which is a subspace of V , is equal to dim(V ). This
implies that the image of T is equal to V because V is finite dimensional. Consequently, T is
surjective.

(ii) Suppose T : C(R,R)→ C(R,R) is the linear transformation given by

T (f)(x) :=

∫ x

0

f(t) dt.

In the class we saw T as an example of a linear map. Show that T has trivial kernel. By
determining the image of this map show that the claim in part (i) is not correct anymore if we
drop the finite dimensionality assumption on V .

Solution. The fundamental theorem of calculus implies that for any f ∈ C(R,R), the function
T (f) : R→ R is differentiable and its derivative is equal to f . If f ∈ ker(T ), then T (f) = 0 and
hence its derivative, which is equal to f , is also the zero function. Therefore, ker(T ) contains only
the zero function and T is injective. On the other hand, T is not surjective because any function
in the image of T is differentiable and there are continuous functions which are not differentiable.
For example, the absolute value function g(x) = |x| is one such function.
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