Problem Set 4

1. (i) Compute $A(B+C) D$ where:

$$
A=\left[\begin{array}{cc}
-2 & 1 \\
3 & 4
\end{array}\right], \quad B=\left[\begin{array}{ccc}
0 & 1 & 4 \\
-2 & 0 & 1
\end{array}\right], \quad C=\left[\begin{array}{lll}
3 & 1 & 1 \\
2 & 1 & 3
\end{array}\right], \quad D=\left[\begin{array}{c}
2 \\
3 \\
-1
\end{array}\right]
$$

(ii) Compute $A^{t} B$ where:

$$
A=\left[\begin{array}{cc}
-1 & 0 \\
7 & -3 \\
4 & 5
\end{array}\right], \quad B=\left[\begin{array}{ccc}
0 & 1 & 6 \\
-2 & 1 & -3 \\
-1 & 1 & 8
\end{array}\right]
$$

2. Suppose \mathcal{P}_{n} denotes the space of all polynomials of degree at most n. That is to say any element of \mathcal{P}_{n} can be written as:

$$
a_{0}+a_{1} x+\cdots+a_{n} x^{n}
$$

where $a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{R}$. Then \mathcal{P}_{n} is a vector space with basis $S_{n}=\left\{1, x, \ldots, x^{n}\right\}$. (You don't need to prove this.) Let $T: \mathcal{P}_{3} \rightarrow \mathcal{P}_{4}$ be the map given by

$$
T(p):=\frac{d p}{d x}-2 x \cdot p
$$

where $p \in \mathcal{P}_{3}$.
(i) Show that $T: \mathcal{P}_{3} \rightarrow \mathcal{P}_{4}$ is a linear map.
(ii) Find the matrix representation $[T]_{S_{3}}^{S_{4}}$ of the linear transformation T.
3. Consider the following linear transformation $T: M_{2 \times 2}(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R})$:

$$
T(M)=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] M-M\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]
$$

(i) Find the matrix $[T]_{S}^{S}$ where S is the following basis of $M_{2 \times 2}(\mathbb{R})$:

$$
S=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\}
$$

(ii) Find bases for the image and kernel of T and determine the rank and nullity of T.
4. Suppose V is a finite dimensional vector space and $T: V \rightarrow V$ is a linear transformation. Show that there are bases S and S^{\prime} for V such that the matrix $[T]_{S}^{S^{\prime}}$ is a diagonal matrix, namely, it has non-zero terms only on the diagonal entries.

