Problem Set 6

1. In each part, determine the tank of the given matrix:
(i) $A=\left[\begin{array}{cccc}1 & 2 & 0 & 2 \\ 3 & 3 & -1 & 6 \\ 4 & 5 & -1 & 8\end{array}\right]$
(ii) $A=\left[\begin{array}{cccc}1 & 0 & 1 & 1 \\ 1 & 1 & -1 & 2 \\ 2 & 0 & 1 & 0 \\ 0 & -1 & 1 & -3 \\ 1 & 2 & -1 & 1\end{array}\right]$
2. For a matrix $A \in M_{m \times n}(\mathbb{R})$, let $T_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be the linear transformation $T_{A}(x)=A x$. For each of the matrices in Problem 1, describe the vectors in the image of T_{A} as the set of solutions to a few linear equations.
3. Determine whether the given matrix A is invertible, and if it is invertible find its inverse.
(i) $A=\left[\begin{array}{ccc}1 & 2 & 0 \\ 3 & 5 & -1 \\ 2 & 4 & 1\end{array}\right]$
(ii) $A=\left[\begin{array}{cccc}1 & 0 & 2 & -1 \\ -1 & 2 & 3 & 1 \\ 0 & 2 & 0 & 1 \\ 1 & 8 & 7 & 2\end{array}\right]$
(iii) $A=\left[\begin{array}{cccc}1 & 2 & 0 & 2 \\ 0 & 5 & -1 & 6 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & -2\end{array}\right]$
4. Suppose A is an $n \times n$ matrix. As usual, the linear transformation associated to A is denoted by $T_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.
(i) Suppose there is a matrix B such that $B A=I_{n}$. Show that the linear transformation T_{A} has trivial kernel.
(ii) Now suppose that there is a matrix C such that such that $A C=I_{n}$. Show that the linear transformation T_{A} has tank n.
(iii) Use the first part to show that if for $A \in M_{n \times n}(\mathbb{R})$ there is a matrix B such that $B A=I_{n}$, then A is invertible. (Recall that to show that A is invertible, it suffices to show that T_{A} is invertible.)
(iv) Use the second part to show that if for $A \in M_{n \times n}(\mathbb{R})$ there is a matrix C such that $A C=I_{n}$, then A is invertible.
5. Show that any invertible matrix can be written as a product of elementary matrices. (Hint: Use the fact that the reduce row echelon form of an invertible matrix is an identity matrix.)
6. For an invertible transformation $T: V \rightarrow W$, show that for any subspace X of V, the dimension of $T(X)$ and X are equal to each other.
7. Suppose $A \in M_{m \times n}(\mathbb{R})$ is a matrix with rank m. Show that there is an $n \times m$ matrix B such that $A B=I_{m}$. (Hint: Try to determine columns of B one by one.)
