Problem Set 7

1. Compute the determinant of the given matrix. In each part, give all the steps for your final answer.

(i)
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 0 \\ 6 & 0 & 0 \end{bmatrix}$$

(ii)
$$A = \begin{bmatrix} 1 & 2 & 0 & 2 \\ 0 & 3 & -1 & 6 \\ 2 & 4 & -1 & -5 \\ 1 & 5 & -1 & 9 \end{bmatrix}$$

(iii)
$$A = \begin{bmatrix} 1 & -2 & 3 & -12 \\ -5 & 12 & -14 & 19 \\ -9 & 22 & -20 & 31 \\ -4 & 9 & -14 & 15 \end{bmatrix}$$

2. Determine the determinant of the following matrix. Give the necessary steps to justify your answer.

$$\left[\begin{array}{cccccc} x & 0 & 0 & 0 & a_0 \\ -1 & x & 0 & 0 & a_1 \\ 0 & -1 & x & 0 & a_2 \\ 0 & 0 & -1 & x & a_3 \\ 0 & 0 & 0 & -1 & x + a_4 \end{array}\right]$$

3. In each part, find k such that the given identity holds for all values of a_1, a_2, \ldots, c_3 .

(i) det
$$\begin{bmatrix} b_1 & b_2 & b_3 \\ a_1 & a_2 & a_3 \\ 2c_1 & 2c_2 & 2c_3 \end{bmatrix} = k \det \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix}$$
.

	_		-		-		_	
	a_1	a_2	a_3		a_1	a_2	a_3	
(ii) det	$2b_1 + a_1$	$2b_2 + a_2$	$2b_3 + a_3$	$= k \det$	b_1	b_2	b_3	.
	$3c_1$	$3c_2$	$3c_{3}$		c_1	c_2	c_3	

(iii) det
$$\begin{bmatrix} b_1 + c_1 & b_2 + c_2 & b_3 + c_3 \\ a_1 + c_1 & a_2 + c_2 & a_3 + c_3 \\ b_1 + c_1 & b_2 + c_2 & b_3 + c_3 \end{bmatrix} = k \det \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix}.$$

- 4. (i) For each elementary matrix E determine the determinant of E.
 - E is the elementary matrix of type (I) corresponding to multiplication of the i^{th} row by the scalar c:

• E is the elementary matrix of type (II) corresponding to interchanging the i^{th} and the j^{th} rows:

• E is the elementary matrix of type (III) corresponding to adding c times the i^{th} row to the j^{th} row:

(ii) For each of the three types of elementary matrices show that $det(E^t) = det(E)$.

- 5. We saw in the class that an $n \times n$ matrix A is invertible if and only if $\det(A) \neq 0$. In this problem, we want to give a formula for the inverse of A assuming that $\det(A) \neq 0$. Suppose C is the $n \times n$ matrix whose entry in the i^{th} row and the j^{th} column is the cofactor $\widetilde{A}_{j,i}$ of A. (Note that the latter is $\widetilde{A}_{j,i}$, not $\widetilde{A}_{i,j}$).
 - (i) In the case that n = 2 and

$$A = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right],$$

determine what C is.

(ii) Show that any diagonal entry of the product matrix AC is equal to det(A). (Here A is a matrix of size n and is not necessarily a 2×2 matrix.)

(iii) For $i \neq j$, let $d_{i,j}$ be the entry of the product AC in the i^{th} row and the j^{th} column. Show that $d_{i,j} = 0$. (Hint: To prove this, show that $d_{i,j}$ is equal to the determinant of the matrix obtained from A by replacing the j^{th} row with the i^{th} row. Then use the fact that a matrix with two equal rows has determinant zero.)

(iv) Show that $B = \frac{1}{\det(A)}C$ is the inverse of A. (Hint: Recall from Problem 4 of the last homework that we just need to show that $AB = I_n$. Then $BA = I_n$ holds automatically and B is the inverse of A.)