Problem Set 7

1. Compute the determinant of the given matrix. In each part, give all the steps for your final answer.
(i) $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 0 \\ 6 & 0 & 0\end{array}\right]$
(ii) $A=\left[\begin{array}{cccc}1 & 2 & 0 & 2 \\ 0 & 3 & -1 & 6 \\ 2 & 4 & -1 & -5 \\ 1 & 5 & -1 & 9\end{array}\right]$
(iii) $A=\left[\begin{array}{cccc}1 & -2 & 3 & -12 \\ -5 & 12 & -14 & 19 \\ -9 & 22 & -20 & 31 \\ -4 & 9 & -14 & 15\end{array}\right]$
2. Determine the determinant of the following matrix. Give the necessary steps to justify your answer.

$$
\left[\begin{array}{ccccc}
x & 0 & 0 & 0 & a_{0} \\
-1 & x & 0 & 0 & a_{1} \\
0 & -1 & x & 0 & a_{2} \\
0 & 0 & -1 & x & a_{3} \\
0 & 0 & 0 & -1 & x+a_{4}
\end{array}\right]
$$

3. In each part, find k such that the given identity holds for all values of $a_{1}, a_{2}, \ldots, c_{3}$.
(i) $\operatorname{det}\left[\begin{array}{ccc}b_{1} & b_{2} & b_{3} \\ a_{1} & a_{2} & a_{3} \\ 2 c_{1} & 2 c_{2} & 2 c_{3}\end{array}\right]=k \operatorname{det}\left[\begin{array}{ccc}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right]$.
(ii) $\operatorname{det}\left[\begin{array}{ccc}a_{1} & a_{2} & a_{3} \\ 2 b_{1}+a_{1} & 2 b_{2}+a_{2} & 2 b_{3}+a_{3} \\ 3 c_{1} & 3 c_{2} & 3 c_{3}\end{array}\right]=k \operatorname{det}\left[\begin{array}{ccc}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right]$.
(iii) $\operatorname{det}\left[\begin{array}{lll}b_{1}+c_{1} & b_{2}+c_{2} & b_{3}+c_{3} \\ a_{1}+c_{1} & a_{2}+c_{2} & a_{3}+c_{3} \\ b_{1}+c_{1} & b_{2}+c_{2} & b_{3}+c_{3}\end{array}\right]=k \operatorname{det}\left[\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right]$.
4. (i) For each elementary matrix E determine the determinant of E.

- E is the elementary matrix of type (I) corresponding to multiplication of the $i^{\text {th }}$ row by the scalar c :
- E is the elementary matrix of type (II) corresponding to interchanging the $i^{\text {th }}$ and the $j^{\text {th }}$ rows:
- E is the elementary matrix of type (III) corresponding to adding c times the $i^{\text {th }}$ row to the $j^{\text {th }}$ row:
(ii) For each of the three types of elementary matrices show that $\operatorname{det}\left(E^{t}\right)=\operatorname{det}(E)$.

5. We saw in the class that an $n \times n$ matrix A is invertible if and only if $\operatorname{det}(A) \neq 0$. In this problem, we want to give a formula for the inverse of A assuming that $\operatorname{det}(A) \neq 0$. Suppose C is the $n \times n$ matrix whose entry in the $i^{\text {th }}$ row and the $j^{\text {th }}$ column is the cofactor $\widetilde{A}_{j, i}$ of A. (Note that the latter is $\widetilde{A}_{j, i}$, $\operatorname{not} \widetilde{A}_{i, j}$).
(i) In the case that $n=2$ and

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

determine what C is.
(ii) Show that any diagonal entry of the product matrix $A C$ is equal to $\operatorname{det}(A)$. (Here A is a matrix of size n and is not necessarily a 2×2 matrix.)
(iii) For $i \neq j$, let $d_{i, j}$ be the entry of the product $A C$ in the $i^{\text {th }}$ row and the $j^{\text {th }}$ column. Show that $d_{i, j}=0$. (Hint: To prove this, show that $d_{i, j}$ is equal to the determinant of the matrix obtained from A by replacing the $j^{\text {th }}$ row with the $i^{\text {th }}$ row. Then use the fact that a matrix with two equal rows has determinant zero.)
(iv) Show that $B=\frac{1}{\operatorname{det}(A)} C$ is the inverse of A. (Hint: Recall from Problem 4 of the last homework that we just need to show that $A B=I_{n}$. Then $B A=I_{n}$ holds automatically and B is the inverse of A.)

