Problem Set 8

1. For each part, find the eigenvalues and the corresponding eigenvectors of A. Determine whether each matrix is diagonalizable. If so, give the diagonal matrix.
(i) $A=\left[\begin{array}{ll}5 & -4 \\ 2 & -1\end{array}\right]$
(ii) $A=\left[\begin{array}{ccc}0 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & 1 & 0\end{array}\right]$
(iii) $A=\left[\begin{array}{cccc}2 & -3 & 6 & 3 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 1\end{array}\right]$
2. (i) Find all (real) eigenvalues of the following matrix. Is it possible to diagonalize this matrix? (This matrix gives the linear transformation from \mathbb{R}^{2} to \mathbb{R}^{2} which rotates a point by the angle t over the origin.)

$$
\left[\begin{array}{cc}
\cos (t) & -\sin (t) \\
\sin (t) & \cos (t)
\end{array}\right]
$$

(ii) Find all (real) eigenvalues of the following matrix. Is it possible to diagonalize this matrix? (This matrix gives the linear transformation from \mathbb{R}^{2} to \mathbb{R}^{2} which reflects a point with respect to an appropriate matrix.)

$$
\left[\begin{array}{cc}
\cos (t) & \sin (t) \\
\sin (t) & -\cos (t)
\end{array}\right]
$$

3. (a) Determine the characteristic polynomial of the following matrix.

$$
\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & a_{0} \\
-1 & 0 & 0 & 0 & a_{1} \\
0 & -1 & 0 & 0 & a_{2} \\
0 & 0 & -1 & 0 & a_{3} \\
0 & 0 & 0 & -1 & a_{4}
\end{array}\right]
$$

(b) Give explicit values for $a_{0}, a_{1}, a_{2}, a_{3}$ and a_{4} such that the above matrix is diagonalizable. Explain why for your answer the matrix is diagonalizable.
4. (i) Show that for each square matrix $A, \operatorname{det}(A)=\operatorname{det}\left(A^{t}\right)$. (Hint: You can separate the problem into two cases that A is invertible and non-invertible. For an invertible matrix, recall that A can be written as the product of elementary matrices. Then use Problem 4 from the last problem set. In the case that A is non-invertible use the fact that $\operatorname{Rank}\left(A^{t}\right)=\operatorname{Rank}(A)$.)
(ii) Show that for each square matrix A, the characteristic polynomials of A and A^{t} are equal to each other.
5. Suppose V is the vector space $M_{3 \times 3}(\mathbb{R})$ and $T: V \rightarrow V$ is the linear transformation which maps a matrix to its transpose.
(i) Determine all eigenvalues of T.
(ii) Determine all eigenvectors of T.

