Problem Set 9

1. In each part, find the smallest T-invariant subspace W of V which contains the vector v :
(i) $V=\mathbb{R}^{4}, v=\left[\begin{array}{c}1 \\ 0 \\ -1 \\ 1\end{array}\right]$ and T is given by multiplication by the matrix $A=\left[\begin{array}{cccc}1 & 1 & 3 & 3 \\ -1 & 1 & 2 & 4 \\ 0 & -2 & 4 & 4 \\ 2 & 0 & 1 & -1\end{array}\right]$.
(ii) V is \mathcal{P}_{3}, the vector space of polynomials of degree at most $3, v=x^{3}+x$ and $T(p(x))=p^{\prime}(x)$.
(ii) $V=M_{2 \times 2}(\mathbb{R}), v=\left[\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right]$ and $T: M_{2 \times 2}(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R})$ is given by $T(B)=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] B$.
2. In each part, for the matrix A find a polynomial $p(x)$ such that $p(A)=0$.
(i) $A=\left[\begin{array}{cccc}2 & 2 & 6 & 1 \\ 0 & 1 & 4 & 7 \\ 0 & 0 & 4 & 7 \\ 0 & 0 & 0 & -1\end{array}\right]$
(ii) $A=\left[\begin{array}{ccccc}0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 & 8 \\ 0 & 0 & 1 & 0 & -11 \\ 0 & 0 & 0 & 1 & 3\end{array}\right]$
(iii) $A=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ (Hint: Regard A as a rotation matrix, and then think about the geometric meaning of the powers A^{k} of A.)
3. Let A be a matrix and $p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ be a polynomial such that $p(A)=0$
(i) If $A=\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$, then show that $a_{0}=a_{1}=a_{2}=a_{3}=0$. That is to say $p(x)$ can be written as $p(x)=x^{4} q(x)$ for a polynomial $q(x)$.
(ii) If $A=\left[\begin{array}{lllll}2 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$, then show that $p(1)=p(2)=p(3)=0$. That is to say $p(x)$ can be written as $p(x)=(x-1)(x-2)(x-3) q(x)$ for a polynomial $q(x)$.
(iii) If $A=\left[\begin{array}{llll}2 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2\end{array}\right]$, then show that $p(x)$ can be written as $p(x)=(x-2)^{4} q(x)$ for a polynomial $q(x)$. (Hint: Any polynomial $p(x)$ can be written in the form $p(x)=a_{n}^{\prime}(x-2)^{n}+$ $a_{n-1}^{\prime}(x-2)^{n-1}+\cdots+a_{1}^{\prime}(x-2)+a_{0}^{\prime}$. Use this presentation of $p(x)$ and then argue as in part (i).)
4. In each part, determine whether the pairing \langle,$\rangle determines an inner product on the vector space V$. Justify your answer.
(i) $V=\mathbb{R}^{2},\left\langle\left[\begin{array}{l}x \\ y\end{array}\right],\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]\right\rangle=x x^{\prime}$.
(ii) $V=\mathbb{R}^{n},\langle\vec{v}, \vec{w}\rangle=(A \vec{v})^{t} A \vec{w}$ where t denotes transpose and A is an invertible matrix.
(iii) $V=\mathbb{R}^{n},\langle\vec{v}, \vec{w}\rangle=(A \vec{v})^{t} A \vec{w}$ where t denotes transpose and A is an $n \times n$ non-invertible matrix.
(iv) $V=C([0,1], \mathbb{R}),\langle f(x), g(x)\rangle=\int_{0}^{\frac{1}{2}} f(x) g(x) d x$.
5. Suppose V is a vector space and \langle,$\rangle is an inner product on V$. Let \vec{v} and \vec{w} be non-zero vectors in V such that

$$
\langle\vec{v}, \vec{w}\rangle=\|\vec{v}\| \cdot\|\vec{w}\|
$$

Show that \vec{v} is a multiple of the vector \vec{w}. (Hint: Re-examine the proof of Cauchy-Schwarz inequality to see when the equality happens.)

